Here we describe three novel collagen VI chains, alpha4, alpha5, and alpha6. The corresponding genes are arranged in tandem on mouse chromosome 9. The new chains structurally resemble the collagen VI alpha3 chain. Each chain consists of seven von Willebrand factor A domains followed by a collagenous domain, two C-terminal von Willebrand factor A domains, and a unique domain. In addition, the collagen VI alpha4 chain carries a Kunitz domain at the C terminus, whereas the collagen VI alpha5 chain contains an additional von Willebrand factor A domain and a unique domain. The size of the collagenous domains and the position of the structurally important cysteine residues within these domains are identical between the collagen VI alpha3, alpha4, alpha5, and alpha6 chains. In mouse, the new chains are found in or close to basement membranes. Collagen VI alpha1 chain-deficient mice lack expression of the new collagen VI chains implicating that the new chains may substitute for the alpha3 chain, probably forming alpha1alpha2alpha4, alpha1alpha2alpha5, or alpha1alpha2alpha6 heterotrimers. Due to a large scale pericentric inversion, the human COL6A4 gene on chromosome 3 was broken into two pieces and became a non-processed pseudogene. Recently COL6A5 was linked to atopic dermatitis and designated COL29A1. The identification of novel collagen VI chains carries implications for the etiology of atopic dermatitis as well as Bethlem myopathy and Ullrich congenital muscular dystrophy.

Three novel collagen VI chains with high homology to the alpha3 chain / Gara, Sudheer Kumar; Grumati, Paolo; Urciuolo, Anna; Bonaldo, Paolo; Kobbe, Birgit; Koch, Manuel; Paulsson, Mats; Wagener, Raimund. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 283:16(2008), pp. 10658-10670. [10.1074/jbc.M709540200]

Three novel collagen VI chains with high homology to the alpha3 chain

Grumati, Paolo;
2008

Abstract

Here we describe three novel collagen VI chains, alpha4, alpha5, and alpha6. The corresponding genes are arranged in tandem on mouse chromosome 9. The new chains structurally resemble the collagen VI alpha3 chain. Each chain consists of seven von Willebrand factor A domains followed by a collagenous domain, two C-terminal von Willebrand factor A domains, and a unique domain. In addition, the collagen VI alpha4 chain carries a Kunitz domain at the C terminus, whereas the collagen VI alpha5 chain contains an additional von Willebrand factor A domain and a unique domain. The size of the collagenous domains and the position of the structurally important cysteine residues within these domains are identical between the collagen VI alpha3, alpha4, alpha5, and alpha6 chains. In mouse, the new chains are found in or close to basement membranes. Collagen VI alpha1 chain-deficient mice lack expression of the new collagen VI chains implicating that the new chains may substitute for the alpha3 chain, probably forming alpha1alpha2alpha4, alpha1alpha2alpha5, or alpha1alpha2alpha6 heterotrimers. Due to a large scale pericentric inversion, the human COL6A4 gene on chromosome 3 was broken into two pieces and became a non-processed pseudogene. Recently COL6A5 was linked to atopic dermatitis and designated COL29A1. The identification of novel collagen VI chains carries implications for the etiology of atopic dermatitis as well as Bethlem myopathy and Ullrich congenital muscular dystrophy.
2008
Three novel collagen VI chains with high homology to the alpha3 chain / Gara, Sudheer Kumar; Grumati, Paolo; Urciuolo, Anna; Bonaldo, Paolo; Kobbe, Birgit; Koch, Manuel; Paulsson, Mats; Wagener, Raimund. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 283:16(2008), pp. 10658-10670. [10.1074/jbc.M709540200]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/900184
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 143
  • ???jsp.display-item.citation.isi??? ND
social impact