The current work deals with the global dynamics of 2D stochastic tidal equations in a highly heterogeneous environment. With the help of the stochastic version of the sigma-convergence method in conjunction with the Prokhorov and Skorokhod compactness theorems, we prove that the dynamics at the macroscopic level is of the same type at the microscopic level, but this time with non oscillating parameters. We also prove a corrector-type result.
Global dynamics of stochastic tidal equations / Cardone, G.; Fouetio, A.; Talla Lando, S.; Woukeng, J. L.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 225:(2022), p. 113137. [10.1016/j.na.2022.113137]
Global dynamics of stochastic tidal equations
G. Cardone
Membro del Collaboration Group
;
2022
Abstract
The current work deals with the global dynamics of 2D stochastic tidal equations in a highly heterogeneous environment. With the help of the stochastic version of the sigma-convergence method in conjunction with the Prokhorov and Skorokhod compactness theorems, we prove that the dynamics at the macroscopic level is of the same type at the microscopic level, but this time with non oscillating parameters. We also prove a corrector-type result.| File | Dimensione | Formato | |
|---|---|---|---|
|
CaFoTaWoNonlinAnal.pdf
solo utenti autorizzati
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
876.8 kB
Formato
Adobe PDF
|
876.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


