The safety of the built heritage of our cities towards environmental factors and seismic actions is a pressing need for designers and researchers. The actual trend is to setup effective solutions to reduce thermal dispersions through the building envelope. Contrarily, combined systems able to enhance the resistance of constructions to earthquakes, on the one hand, and, on the other hand, to increase the energetic efficiency of existing buildings are scarcely diffused on the market and are rarely investigated in the scientific literature. In this framework, the seismic design of the new envelope DUO system for seismic-environmental requalification of existing masonry constructions is illustrated in the present paper with reference to a case study in the Neapolitan area. After the geometrical and mechanical characterization of the investigated building is performed, an FEM model of the masonry construction is setup by the SAP2000 analysis program, which has allowed performing pushover analyses. Based on the non-linear seismic response of the construction, an appropriate upgrading design mainly based on the innovative seismic envelope DUO system has been made. The static non-linear analyses applied to the upgraded FEM model of the building have shown a clear increase in performance in terms of strength, stiffness and ductility, thus confirming the effectiveness of the proposed envelope system.
Combined Energy-Seismic Retrofit of Existing Historical Masonry Buildings: The Novel “DUO System” Coating System Applied to a Case Study / Formisano, A.; Vaiano, G.. - In: HERITAGE. - ISSN 2571-9408. - 4:4(2021), pp. 4629-4646. [10.3390/heritage4040255]
Combined Energy-Seismic Retrofit of Existing Historical Masonry Buildings: The Novel “DUO System” Coating System Applied to a Case Study
Formisano A.
Primo
;Vaiano G.
2021
Abstract
The safety of the built heritage of our cities towards environmental factors and seismic actions is a pressing need for designers and researchers. The actual trend is to setup effective solutions to reduce thermal dispersions through the building envelope. Contrarily, combined systems able to enhance the resistance of constructions to earthquakes, on the one hand, and, on the other hand, to increase the energetic efficiency of existing buildings are scarcely diffused on the market and are rarely investigated in the scientific literature. In this framework, the seismic design of the new envelope DUO system for seismic-environmental requalification of existing masonry constructions is illustrated in the present paper with reference to a case study in the Neapolitan area. After the geometrical and mechanical characterization of the investigated building is performed, an FEM model of the masonry construction is setup by the SAP2000 analysis program, which has allowed performing pushover analyses. Based on the non-linear seismic response of the construction, an appropriate upgrading design mainly based on the innovative seismic envelope DUO system has been made. The static non-linear analyses applied to the upgraded FEM model of the building have shown a clear increase in performance in terms of strength, stiffness and ductility, thus confirming the effectiveness of the proposed envelope system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.