This work experimentally and numerically investigates the thermal performance of a vertical shell-and-tube heat exchanger, filled with a biological phase change material (PCM), linked to a water-chiller system for cold thermal energy storage. The system provides the cooling service to a 150 m2 single-family house. An experimental apparatus has been designed to collect the PCM temperature data through the employment of multiple thermocouples located at different heights of the heat exchanger. Starting from the experiment, a comprehensive 3D numerical model of the system has been developed based on the enthalpy-porosity method using COMSOL Multiphysics®. The PCM temperature profiles and the evolution of the solid-liquid interface location at various time instants are used as performance indicators of the model reliability and accuracy. The numerical agreement with the experimental findings is proved using statistical indices, e.g., maximum values of mean absolute error (MAE) and root mea...
Experimental and numerical analysis of a phase change material-based shell-and-tube heat exchanger for cold thermal energy storage / Fragnito, A.; Bianco, N.; Iasiello, M.; Mauro, G. M.; Mongibello, L.. - In: JOURNAL OF ENERGY STORAGE. - ISSN 2352-152X. - 56:A(2022), p. 105975. [10.1016/j.est.2022.105975]
Experimental and numerical analysis of a phase change material-based shell-and-tube heat exchanger for cold thermal energy storage
Fragnito A.
;Bianco N.;Iasiello M.;Mauro G. M.;
2022
Abstract
This work experimentally and numerically investigates the thermal performance of a vertical shell-and-tube heat exchanger, filled with a biological phase change material (PCM), linked to a water-chiller system for cold thermal energy storage. The system provides the cooling service to a 150 m2 single-family house. An experimental apparatus has been designed to collect the PCM temperature data through the employment of multiple thermocouples located at different heights of the heat exchanger. Starting from the experiment, a comprehensive 3D numerical model of the system has been developed based on the enthalpy-porosity method using COMSOL Multiphysics®. The PCM temperature profiles and the evolution of the solid-liquid interface location at various time instants are used as performance indicators of the model reliability and accuracy. The numerical agreement with the experimental findings is proved using statistical indices, e.g., maximum values of mean absolute error (MAE) and root mea...I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.