Domestic used water treatment systems are currently predominantly based on conventional resource inefficient treatment processes. While resource recovery is gaining momentum it lacks high value end-products which can be efficiently marketed. Microbial protein production offers a valid and promising alternative by upgrading low value recovered resources into high quality feed and also food. In the present study, we evaluated the potential of hydrogen-oxidizing bacteria to upgrade ammonium and carbon dioxide under autotrophic growth conditions. The enrichment of a generic microbial community and the implementation of different culture conditions (sequenced batch resp. continuous reactor) revealed surprising features. At low selection pressure (i.e. under sequenced batch culture at high solid retention time), a very diverse microbiome with an important presence of predatory Bdellovibrio spp. was observed. The microbial culture which evolved under high rate selection pressure (i.e. dilution rate D = 0.1 h -1 ) under continuous reactor conditions was dominated by Sulfuricurvum spp. and a highly stable and efficient process in terms of N and C uptake, biomass yield and volumetric productivity was attained. Under continuous culture conditions the maximum yield obtained was 0.29 g cell dry weight per gram chemical oxygen demand equivalent of hydrogen, whereas the maximum volumetric loading rate peaked 0.41 g cell dry weight per litre per hour at a protein content of 71%. Finally, the microbial protein produced was of high nutritive quality in terms of essential amino acids content and can be a suitable substitute for conventional feed sources such as fishmeal or soybean meal.

Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria / Matassa, S.; Verstraete, W.; Pikaar, I.; Boon, N.. - In: WATER RESEARCH. - ISSN 0043-1354. - 101:(2016), pp. 137-146. [10.1016/j.watres.2016.05.077]

Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria

Matassa S.;
2016

Abstract

Domestic used water treatment systems are currently predominantly based on conventional resource inefficient treatment processes. While resource recovery is gaining momentum it lacks high value end-products which can be efficiently marketed. Microbial protein production offers a valid and promising alternative by upgrading low value recovered resources into high quality feed and also food. In the present study, we evaluated the potential of hydrogen-oxidizing bacteria to upgrade ammonium and carbon dioxide under autotrophic growth conditions. The enrichment of a generic microbial community and the implementation of different culture conditions (sequenced batch resp. continuous reactor) revealed surprising features. At low selection pressure (i.e. under sequenced batch culture at high solid retention time), a very diverse microbiome with an important presence of predatory Bdellovibrio spp. was observed. The microbial culture which evolved under high rate selection pressure (i.e. dilution rate D = 0.1 h -1 ) under continuous reactor conditions was dominated by Sulfuricurvum spp. and a highly stable and efficient process in terms of N and C uptake, biomass yield and volumetric productivity was attained. Under continuous culture conditions the maximum yield obtained was 0.29 g cell dry weight per gram chemical oxygen demand equivalent of hydrogen, whereas the maximum volumetric loading rate peaked 0.41 g cell dry weight per litre per hour at a protein content of 71%. Finally, the microbial protein produced was of high nutritive quality in terms of essential amino acids content and can be a suitable substitute for conventional feed sources such as fishmeal or soybean meal.
2016
Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria / Matassa, S.; Verstraete, W.; Pikaar, I.; Boon, N.. - In: WATER RESEARCH. - ISSN 0043-1354. - 101:(2016), pp. 137-146. [10.1016/j.watres.2016.05.077]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/908551
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 131
  • ???jsp.display-item.citation.isi??? ND
social impact