Purpose: Ovarian cancer is the fifth leading cause of cancer-related deaths in women. Standard treatment consists of tumor debulking surgery followed by platinum and paclitaxel chemotherapy; yet, despite the initial response, about 70-75% of patients develop resistance to chemotherapy. Gold compounds represent a family of very promising anticancer drugs. Among them, we previously investigated the cytotoxic and pro-apoptotic properties of Au(NHC) and Au(NHC)2PF6, i.e., a monocarbene gold(I) complex and the corresponding bis(carbene) complex. Gold compounds are known to alter the redox state of cells interacting with free cysteine and selenocysteine residues of several proteins. Herein, a redox proteomic study has been carried out to elucidate the mechanisms of cytotoxicity in A2780 human ovarian cancer cells. Methods: A biotinylated iodoacetamide labeling method coupled with mass spectrometry was used to identify oxidation-sensitive protein cysteines. Results: Gold carbene complexes cause extensive oxidation of several cellular proteins; many affected proteins belong to two major functional classes: carbohydrate metabolism, and cytoskeleton organization/cell adhesion. Among the affected proteins, Glyceraldehyde-3-phosphate dehydrogenase inhibition was proved by enzymatic assays and by ESI-MS studies. We also found that Au(NHC)2PF6 inhibits mitochondrial respiration impairing complex I function. Concerning the oxidized cytoskeletal proteins, gold binding to the free cysteines of actin was demonstrated by ESI-MS analysis. Notably, both gold compounds affected cell migration and invasion. Conclusions: In this study, we deepened the mode of action of Au(NHC) and Au(NHC)2PF6, identifying common cellular targets but confirming their different influence on the mitochondrial function.

The effects of two gold-N-heterocyclic carbene (NHC) complexes in ovarian cancer cells: a redox proteomic study / Massai, L.; Messori, L.; Carpentieri, A.; Amoresano, A.; Melchiorre, C.; Fiaschi, T.; Modesti, A.; Gamberi, T.; Magherini, F.. - In: CANCER CHEMOTHERAPY AND PHARMACOLOGY. - ISSN 0344-5704. - 89:6(2022), pp. 809-823. [10.1007/s00280-022-04438-y]

The effects of two gold-N-heterocyclic carbene (NHC) complexes in ovarian cancer cells: a redox proteomic study

Carpentieri A.
Methodology
;
Melchiorre C.;Modesti A.;
2022

Abstract

Purpose: Ovarian cancer is the fifth leading cause of cancer-related deaths in women. Standard treatment consists of tumor debulking surgery followed by platinum and paclitaxel chemotherapy; yet, despite the initial response, about 70-75% of patients develop resistance to chemotherapy. Gold compounds represent a family of very promising anticancer drugs. Among them, we previously investigated the cytotoxic and pro-apoptotic properties of Au(NHC) and Au(NHC)2PF6, i.e., a monocarbene gold(I) complex and the corresponding bis(carbene) complex. Gold compounds are known to alter the redox state of cells interacting with free cysteine and selenocysteine residues of several proteins. Herein, a redox proteomic study has been carried out to elucidate the mechanisms of cytotoxicity in A2780 human ovarian cancer cells. Methods: A biotinylated iodoacetamide labeling method coupled with mass spectrometry was used to identify oxidation-sensitive protein cysteines. Results: Gold carbene complexes cause extensive oxidation of several cellular proteins; many affected proteins belong to two major functional classes: carbohydrate metabolism, and cytoskeleton organization/cell adhesion. Among the affected proteins, Glyceraldehyde-3-phosphate dehydrogenase inhibition was proved by enzymatic assays and by ESI-MS studies. We also found that Au(NHC)2PF6 inhibits mitochondrial respiration impairing complex I function. Concerning the oxidized cytoskeletal proteins, gold binding to the free cysteines of actin was demonstrated by ESI-MS analysis. Notably, both gold compounds affected cell migration and invasion. Conclusions: In this study, we deepened the mode of action of Au(NHC) and Au(NHC)2PF6, identifying common cellular targets but confirming their different influence on the mitochondrial function.
2022
The effects of two gold-N-heterocyclic carbene (NHC) complexes in ovarian cancer cells: a redox proteomic study / Massai, L.; Messori, L.; Carpentieri, A.; Amoresano, A.; Melchiorre, C.; Fiaschi, T.; Modesti, A.; Gamberi, T.; Magherini, F.. - In: CANCER CHEMOTHERAPY AND PHARMACOLOGY. - ISSN 0344-5704. - 89:6(2022), pp. 809-823. [10.1007/s00280-022-04438-y]
File in questo prodotto:
File Dimensione Formato  
s00280-022-04438-y.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/911567
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact