: Cardiomyopathy is a common complication in diabetic patients. Ventricular dysfunction without coronary atherosclerosis and hypertension is driven by hyperglycemia, hyperinsulinemia and impaired insulin signaling. Cardiomyocyte death, hypertrophy, fibrosis, and cell signaling defects underlie cardiomyopathy. Notably, detrimental effects of the diabetic milieu are not limited to cardiomyocytes and vascular cells. The diabetic heart acquires a senescent phenotype and also suffers from altered cellular homeostasis and the insufficient replacement of dying cells. Chronic inflammation, oxidative stress, and metabolic dysregulation damage the population of endogenous cardiac stem cells, which contribute to myocardial cell turnover and repair after injury. Therefore, deficient myocardial repair and the progressive senescence and dysfunction of stem cells in the diabetic heart can represent potential therapeutic targets. While our knowledge of the effects of diabetes on stem cells is growing, several strategies to preserve, activate or restore cardiac stem cell compartments await to be tested in diabetic cardiomyopathy.

Unraveling and Targeting Myocardial Regeneration Deficit in Diabetes / Molinaro, Claudia; Salerno, Luca; Marino, Fabiola; Scalise, Mariangela; Salerno, Nadia; Pagano, Loredana; De Angelis, Antonella; Cianflone, Eleonora; Torella, Daniele; Urbanek, Konrad. - In: ANTIOXIDANTS. - ISSN 2076-3921. - 11:2(2022), p. 208. [10.3390/antiox11020208]

Unraveling and Targeting Myocardial Regeneration Deficit in Diabetes

Urbanek, Konrad
2022

Abstract

: Cardiomyopathy is a common complication in diabetic patients. Ventricular dysfunction without coronary atherosclerosis and hypertension is driven by hyperglycemia, hyperinsulinemia and impaired insulin signaling. Cardiomyocyte death, hypertrophy, fibrosis, and cell signaling defects underlie cardiomyopathy. Notably, detrimental effects of the diabetic milieu are not limited to cardiomyocytes and vascular cells. The diabetic heart acquires a senescent phenotype and also suffers from altered cellular homeostasis and the insufficient replacement of dying cells. Chronic inflammation, oxidative stress, and metabolic dysregulation damage the population of endogenous cardiac stem cells, which contribute to myocardial cell turnover and repair after injury. Therefore, deficient myocardial repair and the progressive senescence and dysfunction of stem cells in the diabetic heart can represent potential therapeutic targets. While our knowledge of the effects of diabetes on stem cells is growing, several strategies to preserve, activate or restore cardiac stem cell compartments await to be tested in diabetic cardiomyopathy.
2022
Unraveling and Targeting Myocardial Regeneration Deficit in Diabetes / Molinaro, Claudia; Salerno, Luca; Marino, Fabiola; Scalise, Mariangela; Salerno, Nadia; Pagano, Loredana; De Angelis, Antonella; Cianflone, Eleonora; Torella, Daniele; Urbanek, Konrad. - In: ANTIOXIDANTS. - ISSN 2076-3921. - 11:2(2022), p. 208. [10.3390/antiox11020208]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/913800
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact