: There is mounting evidence regarding the role of impairment in neuromodulatory networks for neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. However, the role of neuromodulatory networks in multiple sclerosis (MS) has not been assessed. We applied resting-state functional connectivity and graph theory to investigate the changes in the functional connectivity within neuromodulatory networks including the serotonergic, noradrenergic, cholinergic, and dopaminergic systems in MS. Twenty-nine MS patients and twenty-four age- and gender-matched healthy controls performed clinical and cognitive assessments including the expanded disability status score, symbol digit modalities test, and Hamilton Depression rating scale. We demonstrated a diffuse reorganization of network topography (P < 0.01) in serotonergic, cholinergic, noradrenergic, and dopaminergic networks in patients with MS. Serotonergic, noradrenergic, and cholinergic network functional connectivity derangement was associated with disease duration, EDSS, and depressive symptoms (P < 0.01). Derangements in serotonergic, noradrenergic, cholinergic, and dopaminergic network impairment were associated with cognitive abilities (P < 0.01). Our results indicate that functional connectivity changes within neuromodulatory networks might be a useful tool in predicting disability burden over time, and could serve as a surrogate endpoint to assess efficacy for symptomatic treatments.

Impaired connectivity within neuromodulatory networks in multiple sclerosis and clinical implications / Carotenuto, Antonio; Wilson, Heather; Giordano, Beniamino; Caminiti, Silvia P; Chappell, Zachary; Williams, Steven C R; Hammers, Alexander; Silber, Eli; Brex, Peter; Politis, Marios. - In: JOURNAL OF NEUROLOGY. - ISSN 1432-1459. - 267:7(2020), pp. 2042-2053. [10.1007/s00415-020-09806-3]

Impaired connectivity within neuromodulatory networks in multiple sclerosis and clinical implications

Carotenuto, Antonio
Primo
Data Curation
;
Giordano, Beniamino
Data Curation
;
2020

Abstract

: There is mounting evidence regarding the role of impairment in neuromodulatory networks for neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. However, the role of neuromodulatory networks in multiple sclerosis (MS) has not been assessed. We applied resting-state functional connectivity and graph theory to investigate the changes in the functional connectivity within neuromodulatory networks including the serotonergic, noradrenergic, cholinergic, and dopaminergic systems in MS. Twenty-nine MS patients and twenty-four age- and gender-matched healthy controls performed clinical and cognitive assessments including the expanded disability status score, symbol digit modalities test, and Hamilton Depression rating scale. We demonstrated a diffuse reorganization of network topography (P < 0.01) in serotonergic, cholinergic, noradrenergic, and dopaminergic networks in patients with MS. Serotonergic, noradrenergic, and cholinergic network functional connectivity derangement was associated with disease duration, EDSS, and depressive symptoms (P < 0.01). Derangements in serotonergic, noradrenergic, cholinergic, and dopaminergic network impairment were associated with cognitive abilities (P < 0.01). Our results indicate that functional connectivity changes within neuromodulatory networks might be a useful tool in predicting disability burden over time, and could serve as a surrogate endpoint to assess efficacy for symptomatic treatments.
2020
Impaired connectivity within neuromodulatory networks in multiple sclerosis and clinical implications / Carotenuto, Antonio; Wilson, Heather; Giordano, Beniamino; Caminiti, Silvia P; Chappell, Zachary; Williams, Steven C R; Hammers, Alexander; Silber, Eli; Brex, Peter; Politis, Marios. - In: JOURNAL OF NEUROLOGY. - ISSN 1432-1459. - 267:7(2020), pp. 2042-2053. [10.1007/s00415-020-09806-3]
File in questo prodotto:
File Dimensione Formato  
Impaired Connectivity.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/914046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact