Background: Green feed diet in ruminants exerts a beneficial effect on rumen metabolism and enhances the content of milk nutraceutical quality. At present, a comprehensive analysis focused on the identification of genes, and therefore, biological processes modulated by the green feed in buffalo rumen has never been reported. We performed RNA-sequencing in the rumen of buffaloes fed a total mixed ration (TMR) + the inclusion of 30% of ryegrass green feed (treated) or TMR (control), and identified differentially expressed genes (DEGs) using EdgeR and NOISeq tools. Results: We found 155 DEGs using EdgeR (p-values < 0.05) and 61 DEGs using NOISeq (prob ≥0.8), 30 of which are shared. The rt-qPCR validation suggested a higher reliability of EdgeR results as compared with NOISeq data, in our biological context. Gene Ontology analysis of DEGs identified using EdgeR revealed that green feed modulates biological processes relevant for the rumen physiology and, then, health and well-being of buffaloes, such as lipid metabolism, response to the oxidative stress, immune response, and muscle structure and function. Accordingly, we found: (i) up-regulation of HSD17B13, LOC102410803 (or PSAT1) and HYKK, and down-regulation of CDO1, SELENBP1 and PEMT, encoding factors involved in energy, lipid and amino acid metabolism; (ii) enhanced expression of SIM2 and TRIM14, whose products are implicated in the immune response and defense against infections, and reduced expression of LOC112585166 (or SAAL1), ROR2, SMOC2, and S100A11, encoding pro-inflammatory factors; (iii) up-regulation of NUDT18, DNAJA4 and HSF4, whose products counteract stressful conditions, and down-regulation of LOC102396388 (or UGT1A9) and LOC102413340 (or MRP4/ABCC4), encoding detoxifying factors; (iv) increased expression of KCNK10, CACNG4, and ATP2B4, encoding proteins modulating Ca2+ homeostasis, and reduced expression of the cytoskeleton-related MYH11 and DES. Conclusion: Although statistically unpowered, this study suggests that green feed modulates the expression of genes involved in biological processes relevant for rumen functionality and physiology, and thus, for welfare and quality production in Italian Mediterranean dairy buffaloes. These findings, that need to be further confirmed through the validation of additional DEGs, allow to speculate a role of green feed in the production of nutraceutical molecules, whose levels might be enhanced also in milk.

Transcriptomic profiles of the ruminal wall in Italian Mediterranean dairy buffaloes fed green forage / Salzano, Angela; Fioriniello, Salvatore; D'Onofrio, Nunzia; Balestrieri, Maria Luisa; Aiese Cigliano, Riccardo; Neglia, Gianluca; Della Ragione, Floriana; Campanile, Giuseppe. - In: BMC GENOMICS. - ISSN 1471-2164. - 24:1(2023), pp. 133-133. [10.1186/s12864-023-09215-6]

Transcriptomic profiles of the ruminal wall in Italian Mediterranean dairy buffaloes fed green forage

Salzano, Angela
Co-primo
;
Fioriniello, Salvatore;Balestrieri, Maria Luisa;Aiese Cigliano, Riccardo;Neglia, Gianluca;Campanile, Giuseppe
Ultimo
2023

Abstract

Background: Green feed diet in ruminants exerts a beneficial effect on rumen metabolism and enhances the content of milk nutraceutical quality. At present, a comprehensive analysis focused on the identification of genes, and therefore, biological processes modulated by the green feed in buffalo rumen has never been reported. We performed RNA-sequencing in the rumen of buffaloes fed a total mixed ration (TMR) + the inclusion of 30% of ryegrass green feed (treated) or TMR (control), and identified differentially expressed genes (DEGs) using EdgeR and NOISeq tools. Results: We found 155 DEGs using EdgeR (p-values < 0.05) and 61 DEGs using NOISeq (prob ≥0.8), 30 of which are shared. The rt-qPCR validation suggested a higher reliability of EdgeR results as compared with NOISeq data, in our biological context. Gene Ontology analysis of DEGs identified using EdgeR revealed that green feed modulates biological processes relevant for the rumen physiology and, then, health and well-being of buffaloes, such as lipid metabolism, response to the oxidative stress, immune response, and muscle structure and function. Accordingly, we found: (i) up-regulation of HSD17B13, LOC102410803 (or PSAT1) and HYKK, and down-regulation of CDO1, SELENBP1 and PEMT, encoding factors involved in energy, lipid and amino acid metabolism; (ii) enhanced expression of SIM2 and TRIM14, whose products are implicated in the immune response and defense against infections, and reduced expression of LOC112585166 (or SAAL1), ROR2, SMOC2, and S100A11, encoding pro-inflammatory factors; (iii) up-regulation of NUDT18, DNAJA4 and HSF4, whose products counteract stressful conditions, and down-regulation of LOC102396388 (or UGT1A9) and LOC102413340 (or MRP4/ABCC4), encoding detoxifying factors; (iv) increased expression of KCNK10, CACNG4, and ATP2B4, encoding proteins modulating Ca2+ homeostasis, and reduced expression of the cytoskeleton-related MYH11 and DES. Conclusion: Although statistically unpowered, this study suggests that green feed modulates the expression of genes involved in biological processes relevant for rumen functionality and physiology, and thus, for welfare and quality production in Italian Mediterranean dairy buffaloes. These findings, that need to be further confirmed through the validation of additional DEGs, allow to speculate a role of green feed in the production of nutraceutical molecules, whose levels might be enhanced also in milk.
2023
Transcriptomic profiles of the ruminal wall in Italian Mediterranean dairy buffaloes fed green forage / Salzano, Angela; Fioriniello, Salvatore; D'Onofrio, Nunzia; Balestrieri, Maria Luisa; Aiese Cigliano, Riccardo; Neglia, Gianluca; Della Ragione, Floriana; Campanile, Giuseppe. - In: BMC GENOMICS. - ISSN 1471-2164. - 24:1(2023), pp. 133-133. [10.1186/s12864-023-09215-6]
File in questo prodotto:
File Dimensione Formato  
2023 Transcriptomic profiles of the ruminal wall in Italian Mediterranean dairy buffaloes fed green forage.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/919788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact