We consider the deformation spaces of some singular product-quotient surfaces $X=(C_1 \times C_2)/G$, where the curves $C_i$ have genus 3 and the group $G$ is isomorphic to $\mathbb{Z}_4$. As a by-product, we give a new construction of Todorov surfaces with $p_g=1$, $q=0$ and $2\le K^2\le 8$ by using $\mathbb{Q}$-Gorenstein smoothings.

Deformations of product-quotient surfaces and reconstruction of Todorov surfaces via Q-Gorenstein smoothing / Lee, Y; Polizzi, Francesco. - (2015), pp. 159-185.

Deformations of product-quotient surfaces and reconstruction of Todorov surfaces via Q-Gorenstein smoothing

POLIZZI, Francesco
2015

Abstract

We consider the deformation spaces of some singular product-quotient surfaces $X=(C_1 \times C_2)/G$, where the curves $C_i$ have genus 3 and the group $G$ is isomorphic to $\mathbb{Z}_4$. As a by-product, we give a new construction of Todorov surfaces with $p_g=1$, $q=0$ and $2\le K^2\le 8$ by using $\mathbb{Q}$-Gorenstein smoothings.
2015
Deformations of product-quotient surfaces and reconstruction of Todorov surfaces via Q-Gorenstein smoothing / Lee, Y; Polizzi, Francesco. - (2015), pp. 159-185.
File in questo prodotto:
File Dimensione Formato  
Lee Polizzi - Electronic version (Advanced Studies Pure Math. 2015).pdf

non disponibili

Dimensione 10.08 MB
Formato Adobe PDF
10.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/921411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact