A methodological contribution to a reproducible Measurement of Emotions for an EEG-based system is proposed. Emotional Valence detection is the suggested use case. Valence detection occurs along the interval scale theorized by the Circumplex Model of emotions. The binary choice, positive valence vs negative valence, represents a first step towards the adoption of a metric scale with a finer resolution. EEG signals were acquired through a 8-channel dry electrode cap. An implicit-more controlled EEG paradigm was employed to elicit emotional valence through the passive view of standardized visual stimuli (i.e., Oasis dataset) in 25 volunteers without depressive disorders. Results from the Self Assessment Manikin questionnaire confirmed the compatibility of the experimental sample with that of Oasis. Two different strategies for feature extraction were compared: (i) based on a-priory knowledge (i.e., Hemispheric Asymmetry Theories), and (ii) automated (i.e., a pipeline of a custom 12-band Filter Bank and Common Spatial Pattern). An average within-subject accuracy of 96.1 %, was obtained by a shallow Artificial Neural Network, while k-Nearest Neighbors allowed to obtain a cross-subject accuracy equal to 80.2%.

EEG-based detection of emotional valence towards a reproducible measurement of emotions / Apicella, A.; Arpaia, P.; Mastrati, G.; Moccaldi, N.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 11:1(2021), p. 21615. [10.1038/s41598-021-00812-7]

EEG-based detection of emotional valence towards a reproducible measurement of emotions

Apicella A.;Arpaia P.
;
Mastrati G.;Moccaldi N.
2021

Abstract

A methodological contribution to a reproducible Measurement of Emotions for an EEG-based system is proposed. Emotional Valence detection is the suggested use case. Valence detection occurs along the interval scale theorized by the Circumplex Model of emotions. The binary choice, positive valence vs negative valence, represents a first step towards the adoption of a metric scale with a finer resolution. EEG signals were acquired through a 8-channel dry electrode cap. An implicit-more controlled EEG paradigm was employed to elicit emotional valence through the passive view of standardized visual stimuli (i.e., Oasis dataset) in 25 volunteers without depressive disorders. Results from the Self Assessment Manikin questionnaire confirmed the compatibility of the experimental sample with that of Oasis. Two different strategies for feature extraction were compared: (i) based on a-priory knowledge (i.e., Hemispheric Asymmetry Theories), and (ii) automated (i.e., a pipeline of a custom 12-band Filter Bank and Common Spatial Pattern). An average within-subject accuracy of 96.1 %, was obtained by a shallow Artificial Neural Network, while k-Nearest Neighbors allowed to obtain a cross-subject accuracy equal to 80.2%.
2021
EEG-based detection of emotional valence towards a reproducible measurement of emotions / Apicella, A.; Arpaia, P.; Mastrati, G.; Moccaldi, N.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 11:1(2021), p. 21615. [10.1038/s41598-021-00812-7]
File in questo prodotto:
File Dimensione Formato  
s41598-021-00812-7.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/921908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 29
social impact