We study necessary and sufficient conditions for the lower-semicontinuity of one-dimensional energies defined on (BV and) SBV of the model form F(u) = sup f(u') V sup ([u]), and prove a relaxation theorem. We apply these results to the study of problems with Dirichlet boundary conditions, highlighting a complex behaviour of solutions. We draw a comparison with the parallel theory for integral energies on SBV.
L^infinity energies on discontinuous functions / Alicandro, Roberto; Braides, A; Cicalese, M.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 12:(2005), pp. 905-928. [10.3934/dcds.2005.12.905]
L^infinity energies on discontinuous functions
ALICANDRO, Roberto;
2005
Abstract
We study necessary and sufficient conditions for the lower-semicontinuity of one-dimensional energies defined on (BV and) SBV of the model form F(u) = sup f(u') V sup ([u]), and prove a relaxation theorem. We apply these results to the study of problems with Dirichlet boundary conditions, highlighting a complex behaviour of solutions. We draw a comparison with the parallel theory for integral energies on SBV.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DCDS_2005.pdf
non disponibili
Licenza:
Non specificato
Dimensione
334.92 kB
Formato
Adobe PDF
|
334.92 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.