We study necessary and sufficient conditions for the lower-semicontinuity of one-dimensional energies defined on (BV and) SBV of the model form F(u) = sup f(u') V sup ([u]), and prove a relaxation theorem. We apply these results to the study of problems with Dirichlet boundary conditions, highlighting a complex behaviour of solutions. We draw a comparison with the parallel theory for integral energies on SBV.

L^infinity energies on discontinuous functions / Alicandro, Roberto; Braides, A; Cicalese, M.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 12:(2005), pp. 905-928. [10.3934/dcds.2005.12.905]

L^infinity energies on discontinuous functions

ALICANDRO, Roberto;
2005

Abstract

We study necessary and sufficient conditions for the lower-semicontinuity of one-dimensional energies defined on (BV and) SBV of the model form F(u) = sup f(u') V sup ([u]), and prove a relaxation theorem. We apply these results to the study of problems with Dirichlet boundary conditions, highlighting a complex behaviour of solutions. We draw a comparison with the parallel theory for integral energies on SBV.
2005
L^infinity energies on discontinuous functions / Alicandro, Roberto; Braides, A; Cicalese, M.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 12:(2005), pp. 905-928. [10.3934/dcds.2005.12.905]
File in questo prodotto:
File Dimensione Formato  
DCDS_2005.pdf

non disponibili

Licenza: Non specificato
Dimensione 334.92 kB
Formato Adobe PDF
334.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/938682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact