We say that a mapping v from Rn to Rd satisfies the (tau, sigma) -N-property if H^sigma( v (E)) = 0 whenever H^tau (E) = 0, where H^tau means the Hausdorff measure. We prove that every mapping v of Sobolev class W_p^k (Rn,Rd ) with kp > n satisfies the (tau, sigma)-N-property for every 0 < tau different from tau*: = n - (k -1)p. We prove also that for k > 1 and for the critical value tau= tau* the corresponding (tau, sigma)-N-property fails in general. Nevertheless, this (tau, sigma)-N-property holds for tau = tau* if we assume in addition that the highest derivatives (Nabla^k)v belong to the Lorentz space L_p,1(Rn ) instead of L_p. We extend these results to the case of fractional Sobolev spaces as well. Also, we establish some Fubini-type theorems for N-properties and discuss their applications to the Morse-Sard theorem and its recent extensions.

On the luzin N-property and the uncertainty principle for Sobolev mappings / Ferone, A.; Korobkov, M. V.; Roviello, A.. - In: ANALYSIS & PDE. - ISSN 2157-5045. - 12:5(2019), pp. 1149-1175. [10.2140/apde.2019.12.1149]

On the luzin N-property and the uncertainty principle for Sobolev mappings

Ferone A.;Roviello A.
2019

Abstract

We say that a mapping v from Rn to Rd satisfies the (tau, sigma) -N-property if H^sigma( v (E)) = 0 whenever H^tau (E) = 0, where H^tau means the Hausdorff measure. We prove that every mapping v of Sobolev class W_p^k (Rn,Rd ) with kp > n satisfies the (tau, sigma)-N-property for every 0 < tau different from tau*: = n - (k -1)p. We prove also that for k > 1 and for the critical value tau= tau* the corresponding (tau, sigma)-N-property fails in general. Nevertheless, this (tau, sigma)-N-property holds for tau = tau* if we assume in addition that the highest derivatives (Nabla^k)v belong to the Lorentz space L_p,1(Rn ) instead of L_p. We extend these results to the case of fractional Sobolev spaces as well. Also, we establish some Fubini-type theorems for N-properties and discuss their applications to the Morse-Sard theorem and its recent extensions.
2019
On the luzin N-property and the uncertainty principle for Sobolev mappings / Ferone, A.; Korobkov, M. V.; Roviello, A.. - In: ANALYSIS & PDE. - ISSN 2157-5045. - 12:5(2019), pp. 1149-1175. [10.2140/apde.2019.12.1149]
File in questo prodotto:
File Dimensione Formato  
Analysis&PDE-1.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 872.18 kB
Formato Adobe PDF
872.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/939246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact