The engineering of nanoparticles impacts the control of their nano-bio interactions at each level of the delivery pathway. Therefore, optimal nanoparticle physicochemical properties should be identified to favour on-target interactions and deliver efficiently active compounds to a specific target. To date, traditional batch processes do not guarantee the reproducibility of results and low polydispersity index of the nanostructures, while microfluidics has emerged as cost effectiveness, short-production time approach to control the nanoparticle size and size distribution. Several thermodynamic processes have been implemented in microfluidics, such as nanoprecipitation, ionotropic gelation, self-assembly, etc., to produce nanoparticles in a continuous mode and high throughput way. In this work, we show how the Artificial Neural Network (ANN) can be adopted to model the impact of microfluidic parameters (namely, flow rates and polymer concentrations) on the size of the nanoparticles. Promising results have been obtained, with the highest model accuracy reaching 98.9 %, thus confirming the proposed approach's potential applicability for an ANN-guided biopolymer nanoparticle design for biomedical applications. Nanostructures with different degrees of complexity are analysed, and a proof-of-concept machine learning approach is proposed to evaluate Hydrodenticity in biopolymer matrices. Statement of Significance: Size, shape and surface charge determine nano-bio interactions of nanoparticles and their ability to target diseases. The ideal nanoparticle design avoids off-target interactions and favours on-target interactions. So, tools enabling the identification of the optimal nanoparticle physicochemical properties for delivery to a specific target are required. In this work, we evaluate the use of Artificial Neural Network (ANN) to analyse the role of microfluidic parameters in predicting the optimal size of the different hydrogel nanoparticles and their ability to trigger Hydrodenticity.
Artificial neural network modelling hydrodenticity for optimal design by microfluidics of polymer nanoparticles to apply in magnetic resonance imaging / Smeraldo, A.; Ponsiglione, A. M.; Netti, P. A.; Torino, E.. - In: ACTA BIOMATERIALIA. - ISSN 1742-7061. - 171:(2023), pp. 440-450. [10.1016/j.actbio.2023.09.029]
Artificial neural network modelling hydrodenticity for optimal design by microfluidics of polymer nanoparticles to apply in magnetic resonance imaging
Ponsiglione A. M.;Netti P. A.;Torino E.
2023
Abstract
The engineering of nanoparticles impacts the control of their nano-bio interactions at each level of the delivery pathway. Therefore, optimal nanoparticle physicochemical properties should be identified to favour on-target interactions and deliver efficiently active compounds to a specific target. To date, traditional batch processes do not guarantee the reproducibility of results and low polydispersity index of the nanostructures, while microfluidics has emerged as cost effectiveness, short-production time approach to control the nanoparticle size and size distribution. Several thermodynamic processes have been implemented in microfluidics, such as nanoprecipitation, ionotropic gelation, self-assembly, etc., to produce nanoparticles in a continuous mode and high throughput way. In this work, we show how the Artificial Neural Network (ANN) can be adopted to model the impact of microfluidic parameters (namely, flow rates and polymer concentrations) on the size of the nanoparticles. Promising results have been obtained, with the highest model accuracy reaching 98.9 %, thus confirming the proposed approach's potential applicability for an ANN-guided biopolymer nanoparticle design for biomedical applications. Nanostructures with different degrees of complexity are analysed, and a proof-of-concept machine learning approach is proposed to evaluate Hydrodenticity in biopolymer matrices. Statement of Significance: Size, shape and surface charge determine nano-bio interactions of nanoparticles and their ability to target diseases. The ideal nanoparticle design avoids off-target interactions and favours on-target interactions. So, tools enabling the identification of the optimal nanoparticle physicochemical properties for delivery to a specific target are required. In this work, we evaluate the use of Artificial Neural Network (ANN) to analyse the role of microfluidic parameters in predicting the optimal size of the different hydrogel nanoparticles and their ability to trigger Hydrodenticity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.