Surfactant-water mixtures display a complex rheological behaviour, with changes in parameters such as viscosity and moduli of several orders of magnitude as a consequence of phase changes, depending on their concentration and temperature: this criticism heavily affects different industrial processes. In our work, linear rheological behaviour of aqueous mixtures of a commercial anionic surfactant, sodium lauryl ether sulphate, is investigated in a range of temperature (30-60 ?) and surfactant concentration (20-72%wt) of technological relevance. Four phases with different texture are identified by polarised light microscopy: micellar, hexagonal, cubic and lamellar, all showing a shear-thinning behaviour. Rheological parameters of cubic phase show a net jump in a relatively narrow temperature range, suggesting a temperature-induced phase change. The systematic analysis of the rheological behaviour of this widely used surfactant system, reported here for the first time, can be of fundamental support for many industrial applications.
SLE3S-water system: a linear rheological characterisation / Ferraro, R.; Caserta, S.. - In: RHEOLOGICA ACTA. - ISSN 0035-4511. - 62:7-8(2023), pp. 365-375. [10.1007/s00397-023-01398-9]
SLE3S-water system: a linear rheological characterisation
Ferraro R.;Caserta S.
2023
Abstract
Surfactant-water mixtures display a complex rheological behaviour, with changes in parameters such as viscosity and moduli of several orders of magnitude as a consequence of phase changes, depending on their concentration and temperature: this criticism heavily affects different industrial processes. In our work, linear rheological behaviour of aqueous mixtures of a commercial anionic surfactant, sodium lauryl ether sulphate, is investigated in a range of temperature (30-60 ?) and surfactant concentration (20-72%wt) of technological relevance. Four phases with different texture are identified by polarised light microscopy: micellar, hexagonal, cubic and lamellar, all showing a shear-thinning behaviour. Rheological parameters of cubic phase show a net jump in a relatively narrow temperature range, suggesting a temperature-induced phase change. The systematic analysis of the rheological behaviour of this widely used surfactant system, reported here for the first time, can be of fundamental support for many industrial applications.File | Dimensione | Formato | |
---|---|---|---|
s00397-023-01398-9.pdf
solo utenti autorizzati
Descrizione: Articolo scaricato dal sito del giornale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
3.14 MB
Formato
Adobe PDF
|
3.14 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.