We introduce and study a notion of Castelnuovo-Mumford regularity suitable for rational normal scroll surfaces. In this setting we prove analogs of some classical properties. We prove splitting criteria for coherent sheaves and a characterization of Ulrich bundles. Finally we study logarithmic bundles associated to arrangements of lines and rational curves.

Castelnuovo-Mumford Regularity and Splitting Criteria for Logarithmic Bundles over Rational Normal Scroll Surfaces / DI GENNARO, Roberta; Malaspina, Francesco. - In: INDAGATIONES MATHEMATICAE. - ISSN 0019-3577. - (In corso di stampa).

Castelnuovo-Mumford Regularity and Splitting Criteria for Logarithmic Bundles over Rational Normal Scroll Surfaces

Roberta Di Gennaro;Francesco Malaspina
In corso di stampa

Abstract

We introduce and study a notion of Castelnuovo-Mumford regularity suitable for rational normal scroll surfaces. In this setting we prove analogs of some classical properties. We prove splitting criteria for coherent sheaves and a characterization of Ulrich bundles. Finally we study logarithmic bundles associated to arrangements of lines and rational curves.
In corso di stampa
Castelnuovo-Mumford Regularity and Splitting Criteria for Logarithmic Bundles over Rational Normal Scroll Surfaces / DI GENNARO, Roberta; Malaspina, Francesco. - In: INDAGATIONES MATHEMATICAE. - ISSN 0019-3577. - (In corso di stampa).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/948290
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact