Least squares regression is highly unreliable when a strong collinearity structure is present among the predictors. Among several proposals introduced in the literature, principal component regression is a straightforward method to overcome the problem, even if it introduces a slight bias in the parameter estimation. This paper presents a simulation study to evaluate the use of principal component regression in the context of quantile regression and, focusing on the variability of the estimates and the model’s prediction ability.

The Use of Principal Components in Quantile Regression: a Simulation Study / Davino, Cristina; Næs, Tormod; Romano, Rosaria; Vistocco, Domenico. - (2023), pp. 410-413. (Intervento presentato al convegno 14th Scientific Meeting of the Classification and Data Analysis Group tenutosi a Salerno nel 11-13 settembre 2023).

The Use of Principal Components in Quantile Regression: a Simulation Study

Cristina Davino;Rosaria Romano
;
Domenico Vistocco
2023

Abstract

Least squares regression is highly unreliable when a strong collinearity structure is present among the predictors. Among several proposals introduced in the literature, principal component regression is a straightforward method to overcome the problem, even if it introduces a slight bias in the parameter estimation. This paper presents a simulation study to evaluate the use of principal component regression in the context of quantile regression and, focusing on the variability of the estimates and the model’s prediction ability.
2023
9788891935632
The Use of Principal Components in Quantile Regression: a Simulation Study / Davino, Cristina; Næs, Tormod; Romano, Rosaria; Vistocco, Domenico. - (2023), pp. 410-413. (Intervento presentato al convegno 14th Scientific Meeting of the Classification and Data Analysis Group tenutosi a Salerno nel 11-13 settembre 2023).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/948771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact