Probabilistic seismic hazard analysis (PSHA) is widely employed worldwide as the rational way to quantify the uncertainty associated to earthquake occurrence and effects. When PSHA is carried out for a whole country, its results are typically expressed in the form of maps of ground motion intensities that all have the same exceedance return period. Classical PSHA relies on data that continuously increase due to instrumental seismic monitoring, and on models that continuously evolve with the knowledge on each of its many aspects. Therefore, it can happen that different, equally legitimate, hazard maps for the same region can show apparently irreconcilable differences, sparking public debate. This situation is currently ongoing in Italy, where the process of governmental enforcement of a new hazard map is delayed. The discussion is complicated by the fact that the events of interest to hazard assessment are intentionally rare at any of the sites the maps refer to, thus impeding empirical validation at any specific site. The presented study, pursuing a regional approach instead, overcoming the issues of site specific PSHA validation, evaluated three different authoritative PSHA studies for Italy. Formal tests were performed directly testing the output of PSHA, that is probabilistic predictions, against the observed ground shaking exceedance frequencies, obtained from about fifty years of continuous monitoring of seismic activities across the country. The bulk of analyses reveals that, apparently alternative hazard maps are, in fact, hardly distinguishable in the light of observations.
Testing three seismic hazard models for Italy via multi-site observations / Iervolino, Iunio; Chioccarelli, Eugenio; Cito, Pasquale. - In: PLOS ONE. - ISSN 1932-6203. - 18:4(2023). [10.1371/journal.pone.0284909]
Testing three seismic hazard models for Italy via multi-site observations
Iervolino, Iunio;Chioccarelli, Eugenio;Cito, Pasquale
2023
Abstract
Probabilistic seismic hazard analysis (PSHA) is widely employed worldwide as the rational way to quantify the uncertainty associated to earthquake occurrence and effects. When PSHA is carried out for a whole country, its results are typically expressed in the form of maps of ground motion intensities that all have the same exceedance return period. Classical PSHA relies on data that continuously increase due to instrumental seismic monitoring, and on models that continuously evolve with the knowledge on each of its many aspects. Therefore, it can happen that different, equally legitimate, hazard maps for the same region can show apparently irreconcilable differences, sparking public debate. This situation is currently ongoing in Italy, where the process of governmental enforcement of a new hazard map is delayed. The discussion is complicated by the fact that the events of interest to hazard assessment are intentionally rare at any of the sites the maps refer to, thus impeding empirical validation at any specific site. The presented study, pursuing a regional approach instead, overcoming the issues of site specific PSHA validation, evaluated three different authoritative PSHA studies for Italy. Formal tests were performed directly testing the output of PSHA, that is probabilistic predictions, against the observed ground shaking exceedance frequencies, obtained from about fifty years of continuous monitoring of seismic activities across the country. The bulk of analyses reveals that, apparently alternative hazard maps are, in fact, hardly distinguishable in the light of observations.File | Dimensione | Formato | |
---|---|---|---|
journal.pone.0284909.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
2.8 MB
Formato
Adobe PDF
|
2.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.