Cavitation inside hydraulic components is a well-known issue, that arises under specific operating conditions. When this phenomenon occurs in valves, it leads to several issues, such as materials damage, performance reduction, and noise. The latter of them is becoming increasingly important in the transport sector, which is moving towards new technologies (i.e., electrification) that are notoriously quiet. Therefore, cavitation detection is becoming a matter of interest for several applications. The purpose of the work presented is to develop a diagnostic technique to detect the onset of cavitation in proportional valves. A 2-way 2-position proportional spool valve has been placed inside an acoustic enclosure; noise signals have been recorded by means of a high frequency microphone, for different flow rates and valve openings. Sound pressure levels have been analysed by means of statistical techniques; a Functional Data Analysis (FDA) has been performed in the open-source R environment, in which the experimental data, collected under different non-cavitation conditions, have been firstly used to perform a Functional Principal Component Analysis (FPCA) and then to define a threshold. Then, a further experimental dataset has been evaluated through a Hotelling control chart, from which it is possible to distinguish cavitating conditions as they fall outside the limits.

Study of a proportional spool valve noise by means of Functional Data Analysis: Cavitation and intensity detection / Romagnuolo, Luca; De Rosa, Raffaele; Frosina, Emma; Senatore, Adolfo. - In: MECHANICAL SYSTEMS AND SIGNAL PROCESSING. - ISSN 0888-3270. - 209:(2024). [10.1016/j.ymssp.2023.111100]

Study of a proportional spool valve noise by means of Functional Data Analysis: Cavitation and intensity detection

De Rosa, Raffaele;Senatore, Adolfo
2024

Abstract

Cavitation inside hydraulic components is a well-known issue, that arises under specific operating conditions. When this phenomenon occurs in valves, it leads to several issues, such as materials damage, performance reduction, and noise. The latter of them is becoming increasingly important in the transport sector, which is moving towards new technologies (i.e., electrification) that are notoriously quiet. Therefore, cavitation detection is becoming a matter of interest for several applications. The purpose of the work presented is to develop a diagnostic technique to detect the onset of cavitation in proportional valves. A 2-way 2-position proportional spool valve has been placed inside an acoustic enclosure; noise signals have been recorded by means of a high frequency microphone, for different flow rates and valve openings. Sound pressure levels have been analysed by means of statistical techniques; a Functional Data Analysis (FDA) has been performed in the open-source R environment, in which the experimental data, collected under different non-cavitation conditions, have been firstly used to perform a Functional Principal Component Analysis (FPCA) and then to define a threshold. Then, a further experimental dataset has been evaluated through a Hotelling control chart, from which it is possible to distinguish cavitating conditions as they fall outside the limits.
2024
Study of a proportional spool valve noise by means of Functional Data Analysis: Cavitation and intensity detection / Romagnuolo, Luca; De Rosa, Raffaele; Frosina, Emma; Senatore, Adolfo. - In: MECHANICAL SYSTEMS AND SIGNAL PROCESSING. - ISSN 0888-3270. - 209:(2024). [10.1016/j.ymssp.2023.111100]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/949911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact