Selecting an optimal clustering solutions is a difficult problem, and there exist many data-driven validation strategies to perform this task. In this paper, we focus on a recent proposal, the BQH and BQS criteria, based on quadratic discriminant scores and bootstrap resampling. We provide more insight on these criteria, comparing them with a likelihood-based alternative and using different resampling schemes.
Empyrical Analysis of the Quadratic Scoring for Selecting Clustering Solutions / Coraggio, Luca; Coretto, Pietro. - (2023), pp. 398-401. (Intervento presentato al convegno CLADAG 2023 tenutosi a Salerno nel 11/09/2023 - 13/09/2023).
Empyrical Analysis of the Quadratic Scoring for Selecting Clustering Solutions
Luca Coraggio
;
2023
Abstract
Selecting an optimal clustering solutions is a difficult problem, and there exist many data-driven validation strategies to perform this task. In this paper, we focus on a recent proposal, the BQH and BQS criteria, based on quadratic discriminant scores and bootstrap resampling. We provide more insight on these criteria, comparing them with a likelihood-based alternative and using different resampling schemes.File | Dimensione | Formato | |
---|---|---|---|
Coraggio2023b - Empirical Analysis of the Quadratic Scoring for Selecting Clustering Solutions.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
654.73 kB
Formato
Adobe PDF
|
654.73 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.