Selecting an optimal clustering solutions is a difficult problem, and there exist many data-driven validation strategies to perform this task. In this paper, we focus on a recent proposal, the BQH and BQS criteria, based on quadratic discriminant scores and bootstrap resampling. We provide more insight on these criteria, comparing them with a likelihood-based alternative and using different resampling schemes.

Empyrical Analysis of the Quadratic Scoring for Selecting Clustering Solutions / Coraggio, Luca; Coretto, Pietro. - (2023), pp. 398-401. (Intervento presentato al convegno CLADAG 2023 tenutosi a Salerno nel 11/09/2023 - 13/09/2023).

Empyrical Analysis of the Quadratic Scoring for Selecting Clustering Solutions

Luca Coraggio
;
2023

Abstract

Selecting an optimal clustering solutions is a difficult problem, and there exist many data-driven validation strategies to perform this task. In this paper, we focus on a recent proposal, the BQH and BQS criteria, based on quadratic discriminant scores and bootstrap resampling. We provide more insight on these criteria, comparing them with a likelihood-based alternative and using different resampling schemes.
2023
9788891935632
Empyrical Analysis of the Quadratic Scoring for Selecting Clustering Solutions / Coraggio, Luca; Coretto, Pietro. - (2023), pp. 398-401. (Intervento presentato al convegno CLADAG 2023 tenutosi a Salerno nel 11/09/2023 - 13/09/2023).
File in questo prodotto:
File Dimensione Formato  
Coraggio2023b - Empirical Analysis of the Quadratic Scoring for Selecting Clustering Solutions.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 654.73 kB
Formato Adobe PDF
654.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/951677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact