Recent R&D activities in nuclear fusion have identified the DEMO reactor as the ITER successor, aiming at demonstrating the technical feasibility of fusion plants, along with their commercial exploitation. However, the pulsed operation of the machine causes an “unconventional” operation of the system, posing unique challenges to the functional feasibility of the steam generator, for which it is necessary to define and qualify a reference configuration for DEMO. In order to facilitate the transitions between different operational regimes, the Once Through Steam Generator (OTSG) is considered to be a suitable choice for the DEMO primary heat transfer systems, being characterized by lower thermal inertia with respect to the most common U-tube steam generators. In this framework, the ENEA has undertaken construction of the STEAM facility at Brasimone R.C., aiming at characterizing the behavior of the DEMO OTSG and related water coolant systems in steady-state and transient conditions. A dedicated OTSG mock-up has been conceived and designed, adopting a scaling procedure, keeping the height 1:1 of the DEMO OTSGs. The conceptual design has been supported by RELAP5/Mod3.3 thermal-hydraulic calculations. CFD and FEM codes have been used for fluid-dynamic analyses and mechanical stress analyses, respectively, in specific parts of the component.
Development of a Steam Generator Mock-Up for EU DEMO Fusion Reactor: Conceptual Design and Code Assessment / Vannoni, A.; Lorusso, P.; Eboli, M.; Giannetti, F.; Ciurluini, C.; Tincani, A.; Marinari, R.; Tarallo, A.; Del Nevo, A.. - In: ENERGIES. - ISSN 1996-1073. - 16:9(2023). [10.3390/en16093729]
Development of a Steam Generator Mock-Up for EU DEMO Fusion Reactor: Conceptual Design and Code Assessment
Tarallo A.Investigation
;
2023
Abstract
Recent R&D activities in nuclear fusion have identified the DEMO reactor as the ITER successor, aiming at demonstrating the technical feasibility of fusion plants, along with their commercial exploitation. However, the pulsed operation of the machine causes an “unconventional” operation of the system, posing unique challenges to the functional feasibility of the steam generator, for which it is necessary to define and qualify a reference configuration for DEMO. In order to facilitate the transitions between different operational regimes, the Once Through Steam Generator (OTSG) is considered to be a suitable choice for the DEMO primary heat transfer systems, being characterized by lower thermal inertia with respect to the most common U-tube steam generators. In this framework, the ENEA has undertaken construction of the STEAM facility at Brasimone R.C., aiming at characterizing the behavior of the DEMO OTSG and related water coolant systems in steady-state and transient conditions. A dedicated OTSG mock-up has been conceived and designed, adopting a scaling procedure, keeping the height 1:1 of the DEMO OTSGs. The conceptual design has been supported by RELAP5/Mod3.3 thermal-hydraulic calculations. CFD and FEM codes have been used for fluid-dynamic analyses and mechanical stress analyses, respectively, in specific parts of the component.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.