The application of doxorubicin (DOX) is hampered by cardiotoxicity, with diastolic dysfunction as the earliest manifestation. Fibrosis leads to impaired relaxation, but the mechanisms that operate shortly after DOX exposure are not clear. We asked whether the activation of cardiac fibroblasts (CFs) anticipates myocardial dysfunction and evaluated the effects of DOX on CF metabolism. CFs were isolated from the hearts of rats after the first injection of DOX. In another experiment, CFs were exposed to DOX in vitro. Cell phenotype and metabolism were determined. Early effects of DOX consisted of diastolic dysfunction and unchanged ejection fraction. Markers of pro-fibrotic remodeling and evidence of CF transformation were present immediately after treatment completion. Oxygen consumption rate and extracellular acidification revealed an increased metabolic activity of CFs and a switch to glycolytic energy production. These effects were consistent in CFs isolated from the hearts of DOX-treated animals and in naïve CFs exposed to DOX in vitro. The metabolic switch was paralleled with the phenotype change of CFs that upregulated markers of myofibroblast differentiation and the activation of pro-fibrotic signaling. In conclusion, the metabolic switch and activation of CFs anticipate DOX-induced damage and represent a novel target in the early phase of anthracycline cardiomyopathy.

Initial Phase of Anthracycline Cardiotoxicity Involves Cardiac Fibroblasts Activation and Metabolic Switch / Telesca, M.; Donniacuo, M.; Bellocchio, G.; Riemma, M. A.; Dell'Aversana, C.; Sgueglia, G.; Cianflone, E.; Cappetta, D.; Torella, D.; Altucci, L.; Castaldo, G.; Rossi, F.; Berrino, L.; Urbanek, K.; De Angelis, A.; Mele, E.. - In: CANCERS. - ISSN 2072-6694. - 16:1 - art ID 53(2024), pp. 1-13. [10.3390/cancers16010053]

Initial Phase of Anthracycline Cardiotoxicity Involves Cardiac Fibroblasts Activation and Metabolic Switch

Castaldo G.;Urbanek K.;
2024

Abstract

The application of doxorubicin (DOX) is hampered by cardiotoxicity, with diastolic dysfunction as the earliest manifestation. Fibrosis leads to impaired relaxation, but the mechanisms that operate shortly after DOX exposure are not clear. We asked whether the activation of cardiac fibroblasts (CFs) anticipates myocardial dysfunction and evaluated the effects of DOX on CF metabolism. CFs were isolated from the hearts of rats after the first injection of DOX. In another experiment, CFs were exposed to DOX in vitro. Cell phenotype and metabolism were determined. Early effects of DOX consisted of diastolic dysfunction and unchanged ejection fraction. Markers of pro-fibrotic remodeling and evidence of CF transformation were present immediately after treatment completion. Oxygen consumption rate and extracellular acidification revealed an increased metabolic activity of CFs and a switch to glycolytic energy production. These effects were consistent in CFs isolated from the hearts of DOX-treated animals and in naïve CFs exposed to DOX in vitro. The metabolic switch was paralleled with the phenotype change of CFs that upregulated markers of myofibroblast differentiation and the activation of pro-fibrotic signaling. In conclusion, the metabolic switch and activation of CFs anticipate DOX-induced damage and represent a novel target in the early phase of anthracycline cardiomyopathy.
2024
Initial Phase of Anthracycline Cardiotoxicity Involves Cardiac Fibroblasts Activation and Metabolic Switch / Telesca, M.; Donniacuo, M.; Bellocchio, G.; Riemma, M. A.; Dell'Aversana, C.; Sgueglia, G.; Cianflone, E.; Cappetta, D.; Torella, D.; Altucci, L.; Castaldo, G.; Rossi, F.; Berrino, L.; Urbanek, K.; De Angelis, A.; Mele, E.. - In: CANCERS. - ISSN 2072-6694. - 16:1 - art ID 53(2024), pp. 1-13. [10.3390/cancers16010053]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/958855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact