There has recently been an increasing interest in Learning Management Systems (LMSs). It is currently unclear, however, exactly how these systems are perceived by their users. This article analyzes data on user acceptance for two LMSs (Blackboard and Canvas). The respective data are collected using a questionnaire modeled after the Technology Acceptance Model (TAM); it relates several variables that influence system acceptability, allowing for a detailed analysis of the system acceptance. We present analyses at two levels of the questionnaire data: questions and constructs (taken from TAM) as well as on different analysis levels using targeted methods. First, we investigate the differences between the above LMSs using statistical tests (t-test). Second, we provide results at the question level using descriptive indices, such as the mean and the Gini heterogeneity index, and apply methods for ordinal data using the Cumulative Link Mixed Model (CLMM). Next, we apply the same approach at the TAM construct level plus descriptive network analysis (degree centrality and bipartite motifs) to explore the variability of users’ answers and the degree of users’ satisfaction considering the extracted patterns. In the context of TAM, the statistical model is able to analyze LMS acceptance on the question level. As we are also very much interested in identifying LMS acceptance at the construct level, in this article, we provide both statistical analysis as well as network analysis to explore the connection between questionnaire data and relational data. A network analysis approach is particularly useful when analyzing LMS acceptance on the construct level, as this can take the structure of the users’ answers across questions per construct into account. Taken together, these results suggest a higher rate of user acceptance among Canvas users compared to Blackboard both for the question and construct level. Likewise, the descriptive network modeling for Canvas indicates a slightly higher concordance between Canvas users than Blackboard at the construct level.
Multi-Level Analysis of Learning Management Systems’ User Acceptance Exemplified in Two System Case Studies † / Shayan, P.; Rondinelli, R.; van Zaanen, M.; Atzmueller, M.. - In: DATA. - ISSN 2306-5729. - 8:3(2023). [10.3390/data8030045]
Multi-Level Analysis of Learning Management Systems’ User Acceptance Exemplified in Two System Case Studies †
Rondinelli R.;
2023
Abstract
There has recently been an increasing interest in Learning Management Systems (LMSs). It is currently unclear, however, exactly how these systems are perceived by their users. This article analyzes data on user acceptance for two LMSs (Blackboard and Canvas). The respective data are collected using a questionnaire modeled after the Technology Acceptance Model (TAM); it relates several variables that influence system acceptability, allowing for a detailed analysis of the system acceptance. We present analyses at two levels of the questionnaire data: questions and constructs (taken from TAM) as well as on different analysis levels using targeted methods. First, we investigate the differences between the above LMSs using statistical tests (t-test). Second, we provide results at the question level using descriptive indices, such as the mean and the Gini heterogeneity index, and apply methods for ordinal data using the Cumulative Link Mixed Model (CLMM). Next, we apply the same approach at the TAM construct level plus descriptive network analysis (degree centrality and bipartite motifs) to explore the variability of users’ answers and the degree of users’ satisfaction considering the extracted patterns. In the context of TAM, the statistical model is able to analyze LMS acceptance on the question level. As we are also very much interested in identifying LMS acceptance at the construct level, in this article, we provide both statistical analysis as well as network analysis to explore the connection between questionnaire data and relational data. A network analysis approach is particularly useful when analyzing LMS acceptance on the construct level, as this can take the structure of the users’ answers across questions per construct into account. Taken together, these results suggest a higher rate of user acceptance among Canvas users compared to Blackboard both for the question and construct level. Likewise, the descriptive network modeling for Canvas indicates a slightly higher concordance between Canvas users than Blackboard at the construct level.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.