Recent agricultural research has prioritized the development of environmentally friendly management strategies to ensure food security, among which the application of biostimulants such as brown algae extracts, arbuscular mycorrhizal fungi (AMF), and their combination are included. The experimental protocol was based on the factorial combination of two planting times (4 May and 1 June) and seven biostimulant treatments (three brown algae species, Cystoseria tamariscifolia—C.t.; Fucus vesiculosus—F.v.; Padina pavonica—P.p.; arbuscular mycorrhizal fungi—AMF; C.t. + AMF; F.v. + AMF; P.p. + AMF) plus an untreated control. The earlier transplant resulted in a higher yield, due to the higher number of fruits per plant, and a higher plant fresh and dry biomass. The treatments with P.p. and F.v. extracts and the combination P.p. + AMF led to the highest yields (56.7 t ha−1 ), mainly due to the highest fruit number per plant. The earlier planting time led to higher values of dry residue, soluble solids, firmness, and colour component ‘a’. The highest values of fruit dry residue were recorded under the F.v. and P.p. extracts, and the combinations F.v. + AMF and P.p. + AMF, the highest soluble solid content with P.p. treatment, and firmness under P.p. + AMF. The highest levels of ‘L’ and ‘a’ fruit colour components were obtained under the P.p. extract treatment, of ‘b’ upon the application of P.p. and F.v. extract, and AMF + P.p. and AMF + F.v. The later planting time led to significantly higher values of the antioxidant parameters, as did the application of the P.p. extract and P.p. + AMF. CAT activity was more intense corresponding to the later tomato crop cycle, P.p. extract, and AMF + P.p. Overall, our study highlights the potential of biostimulants, particularly brown algae extracts and their combination with AMF, to improve tomato yield, antioxidant properties, and biochemical activities.
Biostimulant Effects of Algae Species, Arbuscular Mycorrhizal Fungi, and Their Combinations on Yield and Quality of Yellow Tomato Landrace Under Different Crop Cycles / Abidi, S.; Tallarita, A. V.; Cozzolino, E.; Stoleru, V.; Murariu, O. C.; Abidi, A.; Maiello, R.; Cenvinzo, V.; Lombardi, P.; Cuciniello, A.; Hamrouni, L.; Caruso, G.; Balti, R.. - In: HORTICULTURAE. - ISSN 2311-7524. - 10:876(2024), pp. 1-12.
Biostimulant Effects of Algae Species, Arbuscular Mycorrhizal Fungi, and Their Combinations on Yield and Quality of Yellow Tomato Landrace Under Different Crop Cycles
Abidi S.Primo
;Tallarita A. V.
;Cozzolino E.
;Maiello R.;Cenvinzo V.;Lombardi P.;Cuciniello A.;Caruso G.Co-ultimo
;
2024
Abstract
Recent agricultural research has prioritized the development of environmentally friendly management strategies to ensure food security, among which the application of biostimulants such as brown algae extracts, arbuscular mycorrhizal fungi (AMF), and their combination are included. The experimental protocol was based on the factorial combination of two planting times (4 May and 1 June) and seven biostimulant treatments (three brown algae species, Cystoseria tamariscifolia—C.t.; Fucus vesiculosus—F.v.; Padina pavonica—P.p.; arbuscular mycorrhizal fungi—AMF; C.t. + AMF; F.v. + AMF; P.p. + AMF) plus an untreated control. The earlier transplant resulted in a higher yield, due to the higher number of fruits per plant, and a higher plant fresh and dry biomass. The treatments with P.p. and F.v. extracts and the combination P.p. + AMF led to the highest yields (56.7 t ha−1 ), mainly due to the highest fruit number per plant. The earlier planting time led to higher values of dry residue, soluble solids, firmness, and colour component ‘a’. The highest values of fruit dry residue were recorded under the F.v. and P.p. extracts, and the combinations F.v. + AMF and P.p. + AMF, the highest soluble solid content with P.p. treatment, and firmness under P.p. + AMF. The highest levels of ‘L’ and ‘a’ fruit colour components were obtained under the P.p. extract treatment, of ‘b’ upon the application of P.p. and F.v. extract, and AMF + P.p. and AMF + F.v. The later planting time led to significantly higher values of the antioxidant parameters, as did the application of the P.p. extract and P.p. + AMF. CAT activity was more intense corresponding to the later tomato crop cycle, P.p. extract, and AMF + P.p. Overall, our study highlights the potential of biostimulants, particularly brown algae extracts and their combination with AMF, to improve tomato yield, antioxidant properties, and biochemical activities.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.