Modern distributed systems are designed to manage overload conditions, by throttling the traffic in excess that cannot be served through overload control techniques. However, the adoption of large-scale NoSQL datastores make systems vulnerable to unbalanced overloads, where specific datastore nodes are overloaded because of hot-spot resources and hogs. In this paper, we propose DRACO, a novel overload control solution that is aware of data dependencies between the application and the datastore tiers. DRACO performs selective admission control of application requests, by only dropping the ones that map to resources on overloaded datastore nodes, while achieving high resource utilization on non-overloaded datastore nodes. We evaluate DRACO on two case studies with high availability and performance requirements, a virtualized IP Multimedia Subsystem and a distributed fileserver. Results show that the solution can achieve high performance and resource utilization even under extreme overload conditions, up to 100x the engineered capacity.

DRACO: Distributed Resource-aware Admission Control for large-scale, multi-tier systems / Cotroneo, D.; Natella, R.; Rosiello, S.. - In: JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING. - ISSN 0743-7315. - 192:(2024). [10.1016/j.jpdc.2024.104935]

DRACO: Distributed Resource-aware Admission Control for large-scale, multi-tier systems

Cotroneo D.;Natella R.;Rosiello S.
2024

Abstract

Modern distributed systems are designed to manage overload conditions, by throttling the traffic in excess that cannot be served through overload control techniques. However, the adoption of large-scale NoSQL datastores make systems vulnerable to unbalanced overloads, where specific datastore nodes are overloaded because of hot-spot resources and hogs. In this paper, we propose DRACO, a novel overload control solution that is aware of data dependencies between the application and the datastore tiers. DRACO performs selective admission control of application requests, by only dropping the ones that map to resources on overloaded datastore nodes, while achieving high resource utilization on non-overloaded datastore nodes. We evaluate DRACO on two case studies with high availability and performance requirements, a virtualized IP Multimedia Subsystem and a distributed fileserver. Results show that the solution can achieve high performance and resource utilization even under extreme overload conditions, up to 100x the engineered capacity.
2024
DRACO: Distributed Resource-aware Admission Control for large-scale, multi-tier systems / Cotroneo, D.; Natella, R.; Rosiello, S.. - In: JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING. - ISSN 0743-7315. - 192:(2024). [10.1016/j.jpdc.2024.104935]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/972384
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact