High temperature superconductivity emerges in unique materials, like cuprates, that belong to the class of heterostructures at atomic limit, made of a superlattice of superconducting atomic layers intercalated by spacer layers. The physical properties of a strongly correlated electronic system, emerge from the competition between different phases with a resulting inhomogeneity from nanoscale to micron scale. Here, we focus on the spatial arrangements of two types of structural defects in the cuprate La2CuO4+y : (i) the local lattice distortions in the CuO2 active layers and (ii) the lattice distortions around the charged chemical dopants in the spacer layers. We use a new advanced microscopy method: scanning nano X-ray diffraction (nXRD). We show here that local lattice distortions form incommensurate nanoscale ripples spatially anticorrelated with puddles of self-organized chemical dopants in the spacer layers.

Competing Striped Structures in La2CuO4+y / Poccia, N; CaporaleAntonio Bianconi, Alessandro RicciGaetano CampiA. -S.. - In: JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM. - ISSN 1557-1939. - (2013). [https://doi.org/10.1007/s10948-013-2164-x]

Competing Striped Structures in La2CuO4+y

Poccia N;
2013

Abstract

High temperature superconductivity emerges in unique materials, like cuprates, that belong to the class of heterostructures at atomic limit, made of a superlattice of superconducting atomic layers intercalated by spacer layers. The physical properties of a strongly correlated electronic system, emerge from the competition between different phases with a resulting inhomogeneity from nanoscale to micron scale. Here, we focus on the spatial arrangements of two types of structural defects in the cuprate La2CuO4+y : (i) the local lattice distortions in the CuO2 active layers and (ii) the lattice distortions around the charged chemical dopants in the spacer layers. We use a new advanced microscopy method: scanning nano X-ray diffraction (nXRD). We show here that local lattice distortions form incommensurate nanoscale ripples spatially anticorrelated with puddles of self-organized chemical dopants in the spacer layers.
2013
Competing Striped Structures in La2CuO4+y / Poccia, N; CaporaleAntonio Bianconi, Alessandro RicciGaetano CampiA. -S.. - In: JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM. - ISSN 1557-1939. - (2013). [https://doi.org/10.1007/s10948-013-2164-x]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/977865
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact