In the era of liquid biopsy, microRNAs emerge as promising candidates for the early diagnosis and prognosis of cancer, offering valuable insights into the disease’s development. Among all the existing analytical approaches, even if traditional approaches such as the nucleic acid amplification ones have the advantages to be highly sensitive, they cannot be used at the point-of-care, while sensors might be poorly sensitive despite their portability. In order to improve the analytical performance of existing electroanalytical systems, we demonstrate how a simple chromatographic paper-based disk might be useful to rationally improve the sensitivity, depending on the number of preconcentration cycles. A paper-based electrochemical platform for miRNA detection has been developed by modifying a paper-based electrode with a methylene blue (MB)-modified single-stranded sequence (ssDNA) complementary to the chosen miRNA, namely miR-224 that is associated with lung cancer. A detection limit of ca. 0.6 nM has been obtained in spiked human serum samples. To further enhance the sensitivity, an external chromatographic wax-patterned paper-based disk has been adopted to preconcentrate the sample, and this has been demonstrated both in standard and in serum solutions. For each solution, three miR-224 levels have been preconcentrated, obtaining a satisfactory lowering detection limit of ca. 50 pM using a simple and sustainable procedure. This approach opens wide possibilities in the field of analytical and bioanalytical chemistry, being useful not only for electrochemistry but also for other architectures of detection and transduction.

Enhancing sensitivity towards electrochemical miRNA detection using an affordable paper-based strategy / Cimmino, W.; Raucci, A.; Grosso, S. P.; Normanno, N.; Cinti, S.. - In: ANALYTICAL AND BIOANALYTICAL CHEMISTRY. - ISSN 1618-2642. - 416:19(2024), pp. 4227-4236. [10.1007/s00216-024-05406-6]

Enhancing sensitivity towards electrochemical miRNA detection using an affordable paper-based strategy

Cimmino W.;Raucci A.;Cinti S.
Ultimo
2024

Abstract

In the era of liquid biopsy, microRNAs emerge as promising candidates for the early diagnosis and prognosis of cancer, offering valuable insights into the disease’s development. Among all the existing analytical approaches, even if traditional approaches such as the nucleic acid amplification ones have the advantages to be highly sensitive, they cannot be used at the point-of-care, while sensors might be poorly sensitive despite their portability. In order to improve the analytical performance of existing electroanalytical systems, we demonstrate how a simple chromatographic paper-based disk might be useful to rationally improve the sensitivity, depending on the number of preconcentration cycles. A paper-based electrochemical platform for miRNA detection has been developed by modifying a paper-based electrode with a methylene blue (MB)-modified single-stranded sequence (ssDNA) complementary to the chosen miRNA, namely miR-224 that is associated with lung cancer. A detection limit of ca. 0.6 nM has been obtained in spiked human serum samples. To further enhance the sensitivity, an external chromatographic wax-patterned paper-based disk has been adopted to preconcentrate the sample, and this has been demonstrated both in standard and in serum solutions. For each solution, three miR-224 levels have been preconcentrated, obtaining a satisfactory lowering detection limit of ca. 50 pM using a simple and sustainable procedure. This approach opens wide possibilities in the field of analytical and bioanalytical chemistry, being useful not only for electrochemistry but also for other architectures of detection and transduction.
2024
Enhancing sensitivity towards electrochemical miRNA detection using an affordable paper-based strategy / Cimmino, W.; Raucci, A.; Grosso, S. P.; Normanno, N.; Cinti, S.. - In: ANALYTICAL AND BIOANALYTICAL CHEMISTRY. - ISSN 1618-2642. - 416:19(2024), pp. 4227-4236. [10.1007/s00216-024-05406-6]
File in questo prodotto:
File Dimensione Formato  
98_Analytical Bioanalytical Chemistry.pdf

accesso aperto

Licenza: Non specificato
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/980646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact