It is well established that the 13C(α, n)16O reaction (Q=2.215 MeV) is the major neutron source feeding the s-process in low mass (1−3M⊙) Asymptotic Giant Branch (AGB) stars. In the last decades, several measurements have been performed. Nevertheless, no dataset reaches the Gamow window (140 keV <250 keV). This is due to the exponential drop of the cross section σ(E) with decreasing energy. The consequence is that the reaction rate becomes so low that the cosmic background becomes predominant in surface laboratories. A recent measurement was carried out in deep underground laboratory of Laboratori Nazionali del Gran Sasso (LNGS) in the framework of the LUNA experiment. To measure the 13C(α, n)16O cross section at low energies, a multiple effort has been performed to suppress the background in the setup, to maximise the detector efficiency and to keep under control the target modification under an intense stable beam provided by the LUNA accelerator (= 200 µA). Thanks to these accuracies, the 13C(α, n)16O cross section was measured in the center of mass energy range 230 keV <305 keV with a maximum 20% overall uncertainty. This allowed to constrain the reaction rate at T=0.1 GK at 15% uncertainty and to lead the way for new possible astrophysical consequences.

Final results on the 13C(α,n)16O cross section at low energies at LUNA / Ciani, Giovanni Francesc; Csedreki, Laszlo; Rapagnani, David; Best, Andreas; Formicola, Alba; Null, Null. - In: EPJ WEB OF CONFERENCES. - ISSN 2100-014X. - 260:(2022). [10.1051/epjconf/202226008003]

Final results on the 13C(α,n)16O cross section at low energies at LUNA

Rapagnani, David;Best, Andreas;
2022

Abstract

It is well established that the 13C(α, n)16O reaction (Q=2.215 MeV) is the major neutron source feeding the s-process in low mass (1−3M⊙) Asymptotic Giant Branch (AGB) stars. In the last decades, several measurements have been performed. Nevertheless, no dataset reaches the Gamow window (140 keV <250 keV). This is due to the exponential drop of the cross section σ(E) with decreasing energy. The consequence is that the reaction rate becomes so low that the cosmic background becomes predominant in surface laboratories. A recent measurement was carried out in deep underground laboratory of Laboratori Nazionali del Gran Sasso (LNGS) in the framework of the LUNA experiment. To measure the 13C(α, n)16O cross section at low energies, a multiple effort has been performed to suppress the background in the setup, to maximise the detector efficiency and to keep under control the target modification under an intense stable beam provided by the LUNA accelerator (= 200 µA). Thanks to these accuracies, the 13C(α, n)16O cross section was measured in the center of mass energy range 230 keV <305 keV with a maximum 20% overall uncertainty. This allowed to constrain the reaction rate at T=0.1 GK at 15% uncertainty and to lead the way for new possible astrophysical consequences.
2022
Final results on the 13C(α,n)16O cross section at low energies at LUNA / Ciani, Giovanni Francesc; Csedreki, Laszlo; Rapagnani, David; Best, Andreas; Formicola, Alba; Null, Null. - In: EPJ WEB OF CONFERENCES. - ISSN 2100-014X. - 260:(2022). [10.1051/epjconf/202226008003]
File in questo prodotto:
File Dimensione Formato  
24. Ciani et al. 2022 EPJ Web of Conferences 260, 08003.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/985246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact