Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
In this work, we expand on the XENON1T nuclear recoil searches to study the individual signals of dark matter interactions from operators up to dimension eight in a chiral effective field theory (ChEFT) and a model of inelastic dark matter (iDM). We analyze data from two science runs of the XENON1T detector totaling 1 t ⨯ yr exposure. For these analyses, we extended the region of interest from [4.9,40.9] keVNR to [4.9,54.4] keVNR to enhance our sensitivity for signals that peak at nonzero energies. We show that the data are consistent with the background-only hypothesis, with a small background overfluctuation observed peaking between 20 and 50 keVNR, resulting in a maximum local discovery significance of 1.7σ for the Vector⨂Vector strange ChEFT channel for a dark matter particle of 70 GeV/c² and 1.8σ for an iDM particle of 50 GeV/c² with a mass splitting of 100 keV/c². For each model, we report 90% confidence level upper limits. We also report upper limits on three benchmark models of dark matter interaction using ChEFT where we investigate the effect of isospin-breaking interactions. We observe rate-driven cancellations in regions of the isospin-breaking couplings, leading to up to 6 orders of magnitude weaker upper limits with respect to the isospin-conserving case.
Effective field theory and inelastic dark matter results from XENON1T / Aprile, E.; Abe, K.; Agostini, F.; Ahmed Maouloud, S.; Althueser, L.; Andrieu, B.; Angelino, E.; Angevaare, J. r.; Antochi, V. c.; Antón Martin, D.; Arneodo, F.; Baudis, L.; Baxter, A. l.; Bellagamba, L.; Biondi, R.; Bismark, A.; Brown, A.; Bruenner, S.; Bruno, G.; Budnik, R.; Cai, C.; Capelli, C.; Cardoso, J. m. r.; Cichon, D.; Clark, M.; Colijn, A. p.; Conrad, J.; Cuenca-García, J. j.; Cussonneau, J. p.; D'Andrea, V.; Decowski, M. p.; Di Gangi, P.; Di Pede, S.; Di Giovanni, A.; Di Stefano, R.; Diglio, S.; Eitel, K.; Elykov, A.; Farrell, S.; Ferella, A. d.; Fischer, H.; Fulgione, W.; Gaemers, P.; Gaior, R.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Glade-Beucke, R.; Grandi, L.; Grigat, J.; Guida, M.; Hammann, R.; Higuera, A.; Hils, C.; Hoetzsch, L.; Howlett, J.; Iacovacci, M.; Itow, Y.; Jakob, J.; Joerg, F.; Joy, A.; Kato, N.; Kara, M.; Kavrigin, P.; Kazama, S.; Kobayashi, M.; Koltman, G.; Kopec, A.; Landsman, H.; Lang, R. f.; Levinson, L.; Li, I.; Li, S.; Liang, S.; Lindemann, S.; Lindner, M.; Liu, K.; Loizeau, J.; Lombardi, F.; Long, J.; Lopes, J. a. m.; Ma, Y.; Macolino, C.; Mahlstedt, J.; Mancuso, A.; Manenti, L.; Manfredini, A.; Marignetti, F.; Marrodán Undagoitia, T.; Martens, K.; Masbou, J.; Masson, D.; Masson, E.; Mastroianni, S.; Messina, M.; Miuchi, K.; Mizukoshi, K.; Molinario, A.; Moriyama, S.; Morå, K.; Mosbacher, Y.; Murra, M.; Müller, J.; Ni, K.; Oberlack, U.; Paetsch, B.; Palacio, J.; Peres, R.; Pienaar, J.; Pierre, M.; Pizzella, V.; Plante, G.; Qi, J.; Qin, J.; Ramírez García, D.; Reichard, S.; Rocchetti, A.; Rupp, N.; Sanchez, L.; Dos Santos, J. m. f.; Sarnoff, I.; Sartorelli, G.; Schreiner, J.; Schulte, D.; Schulte, P.; Schulze Eißing, H.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Semeria, F.; Shagin, P.; Shi, S.; Shockley, E.; Silva, M.; Simgen, H.; Takeda, A.; Tan, P. -L.; Terliuk, A.; Thers, D.; Toschi, F.; Trinchero, G.; Tunnell, C.; Tönnies, F.; Valerius, K.; Volta, G.; Wei, Y.; Weinheimer, C.; Weiss, M.; Wenz, D.; Wittweg, C.; Wolf, T.; Xu, D.; Xu, Z.; Yamashita, M.; Yang, L.; Ye, J.; Yuan, L.; Zavattini, G.; Zhong, M.; Zhu, T.; Null, Null. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 109:11(2024). [10.1103/physrevd.109.112017]
Effective field theory and inelastic dark matter results from XENON1T
In this work, we expand on the XENON1T nuclear recoil searches to study the individual signals of dark matter interactions from operators up to dimension eight in a chiral effective field theory (ChEFT) and a model of inelastic dark matter (iDM). We analyze data from two science runs of the XENON1T detector totaling 1 t ⨯ yr exposure. For these analyses, we extended the region of interest from [4.9,40.9] keVNR to [4.9,54.4] keVNR to enhance our sensitivity for signals that peak at nonzero energies. We show that the data are consistent with the background-only hypothesis, with a small background overfluctuation observed peaking between 20 and 50 keVNR, resulting in a maximum local discovery significance of 1.7σ for the Vector⨂Vector strange ChEFT channel for a dark matter particle of 70 GeV/c² and 1.8σ for an iDM particle of 50 GeV/c² with a mass splitting of 100 keV/c². For each model, we report 90% confidence level upper limits. We also report upper limits on three benchmark models of dark matter interaction using ChEFT where we investigate the effect of isospin-breaking interactions. We observe rate-driven cancellations in regions of the isospin-breaking couplings, leading to up to 6 orders of magnitude weaker upper limits with respect to the isospin-conserving case.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/986513
Citazioni
ND
4
2
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.