In this work, we expand on the XENON1T nuclear recoil searches to study the individual signals of dark matter interactions from operators up to dimension eight in a chiral effective field theory (ChEFT) and a model of inelastic dark matter (iDM). We analyze data from two science runs of the XENON1T detector totaling 1  t ⨯ yr exposure. For these analyses, we extended the region of interest from [4.9,40.9]  keVNR to [4.9,54.4]  keVNR to enhance our sensitivity for signals that peak at nonzero energies. We show that the data are consistent with the background-only hypothesis, with a small background overfluctuation observed peaking between 20 and 50  keVNR, resulting in a maximum local discovery significance of 1.7⁢σ for the Vector⨂Vector strange ChEFT channel for a dark matter particle of 70  GeV/c² and 1.8⁢σ for an iDM particle of 50  GeV/c² with a mass splitting of 100  keV/c². For each model, we report 90% confidence level upper limits. We also report upper limits on three benchmark models of dark matter interaction using ChEFT where we investigate the effect of isospin-breaking interactions. We observe rate-driven cancellations in regions of the isospin-breaking couplings, leading to up to 6 orders of magnitude weaker upper limits with respect to the isospin-conserving case.

Effective field theory and inelastic dark matter results from XENON1T / Aprile, E.; Abe, K.; Agostini, F.; Ahmed Maouloud, S.; Althueser, L.; Andrieu, B.; Angelino, E.; Angevaare, J.  r.; Antochi, V.  c.; Antón Martin, D.; Arneodo, F.; Baudis, L.; Baxter, A.  l.; Bellagamba, L.; Biondi, R.; Bismark, A.; Brown, A.; Bruenner, S.; Bruno, G.; Budnik, R.; Cai, C.; Capelli, C.; Cardoso, J.  m.  r.; Cichon, D.; Clark, M.; Colijn, A.  p.; Conrad, J.; Cuenca-García, J.  j.; Cussonneau, J.  p.; D'Andrea, V.; Decowski, M.  p.; Di Gangi, P.; Di Pede, S.; Di Giovanni, A.; Di Stefano, R.; Diglio, S.; Eitel, K.; Elykov, A.; Farrell, S.; Ferella, A.  d.; Fischer, H.; Fulgione, W.; Gaemers, P.; Gaior, R.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Glade-Beucke, R.; Grandi, L.; Grigat, J.; Guida, M.; Hammann, R.; Higuera, A.; Hils, C.; Hoetzsch, L.; Howlett, J.; Iacovacci, M.; Itow, Y.; Jakob, J.; Joerg, F.; Joy, A.; Kato, N.; Kara, M.; Kavrigin, P.; Kazama, S.; Kobayashi, M.; Koltman, G.; Kopec, A.; Landsman, H.; Lang, R.  f.; Levinson, L.; Li, I.; Li, S.; Liang, S.; Lindemann, S.; Lindner, M.; Liu, K.; Loizeau, J.; Lombardi, F.; Long, J.; Lopes, J.  a.  m.; Ma, Y.; Macolino, C.; Mahlstedt, J.; Mancuso, A.; Manenti, L.; Manfredini, A.; Marignetti, F.; Marrodán Undagoitia, T.; Martens, K.; Masbou, J.; Masson, D.; Masson, E.; Mastroianni, S.; Messina, M.; Miuchi, K.; Mizukoshi, K.; Molinario, A.; Moriyama, S.; Morå, K.; Mosbacher, Y.; Murra, M.; Müller, J.; Ni, K.; Oberlack, U.; Paetsch, B.; Palacio, J.; Peres, R.; Pienaar, J.; Pierre, M.; Pizzella, V.; Plante, G.; Qi, J.; Qin, J.; Ramírez García, D.; Reichard, S.; Rocchetti, A.; Rupp, N.; Sanchez, L.; Dos Santos, J.  m.  f.; Sarnoff, I.; Sartorelli, G.; Schreiner, J.; Schulte, D.; Schulte, P.; Schulze Eißing, H.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Semeria, F.; Shagin, P.; Shi, S.; Shockley, E.; Silva, M.; Simgen, H.; Takeda, A.; Tan, P. -L.; Terliuk, A.; Thers, D.; Toschi, F.; Trinchero, G.; Tunnell, C.; Tönnies, F.; Valerius, K.; Volta, G.; Wei, Y.; Weinheimer, C.; Weiss, M.; Wenz, D.; Wittweg, C.; Wolf, T.; Xu, D.; Xu, Z.; Yamashita, M.; Yang, L.; Ye, J.; Yuan, L.; Zavattini, G.; Zhong, M.; Zhu, T.; Null, Null. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 109:11(2024). [10.1103/physrevd.109.112017]

Effective field theory and inelastic dark matter results from XENON1T

Iacovacci, M.;Marignetti, F.;Mastroianni, S.;
2024

Abstract

In this work, we expand on the XENON1T nuclear recoil searches to study the individual signals of dark matter interactions from operators up to dimension eight in a chiral effective field theory (ChEFT) and a model of inelastic dark matter (iDM). We analyze data from two science runs of the XENON1T detector totaling 1  t ⨯ yr exposure. For these analyses, we extended the region of interest from [4.9,40.9]  keVNR to [4.9,54.4]  keVNR to enhance our sensitivity for signals that peak at nonzero energies. We show that the data are consistent with the background-only hypothesis, with a small background overfluctuation observed peaking between 20 and 50  keVNR, resulting in a maximum local discovery significance of 1.7⁢σ for the Vector⨂Vector strange ChEFT channel for a dark matter particle of 70  GeV/c² and 1.8⁢σ for an iDM particle of 50  GeV/c² with a mass splitting of 100  keV/c². For each model, we report 90% confidence level upper limits. We also report upper limits on three benchmark models of dark matter interaction using ChEFT where we investigate the effect of isospin-breaking interactions. We observe rate-driven cancellations in regions of the isospin-breaking couplings, leading to up to 6 orders of magnitude weaker upper limits with respect to the isospin-conserving case.
2024
Effective field theory and inelastic dark matter results from XENON1T / Aprile, E.; Abe, K.; Agostini, F.; Ahmed Maouloud, S.; Althueser, L.; Andrieu, B.; Angelino, E.; Angevaare, J.  r.; Antochi, V.  c.; Antón Martin, D.; Arneodo, F.; Baudis, L.; Baxter, A.  l.; Bellagamba, L.; Biondi, R.; Bismark, A.; Brown, A.; Bruenner, S.; Bruno, G.; Budnik, R.; Cai, C.; Capelli, C.; Cardoso, J.  m.  r.; Cichon, D.; Clark, M.; Colijn, A.  p.; Conrad, J.; Cuenca-García, J.  j.; Cussonneau, J.  p.; D'Andrea, V.; Decowski, M.  p.; Di Gangi, P.; Di Pede, S.; Di Giovanni, A.; Di Stefano, R.; Diglio, S.; Eitel, K.; Elykov, A.; Farrell, S.; Ferella, A.  d.; Fischer, H.; Fulgione, W.; Gaemers, P.; Gaior, R.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Glade-Beucke, R.; Grandi, L.; Grigat, J.; Guida, M.; Hammann, R.; Higuera, A.; Hils, C.; Hoetzsch, L.; Howlett, J.; Iacovacci, M.; Itow, Y.; Jakob, J.; Joerg, F.; Joy, A.; Kato, N.; Kara, M.; Kavrigin, P.; Kazama, S.; Kobayashi, M.; Koltman, G.; Kopec, A.; Landsman, H.; Lang, R.  f.; Levinson, L.; Li, I.; Li, S.; Liang, S.; Lindemann, S.; Lindner, M.; Liu, K.; Loizeau, J.; Lombardi, F.; Long, J.; Lopes, J.  a.  m.; Ma, Y.; Macolino, C.; Mahlstedt, J.; Mancuso, A.; Manenti, L.; Manfredini, A.; Marignetti, F.; Marrodán Undagoitia, T.; Martens, K.; Masbou, J.; Masson, D.; Masson, E.; Mastroianni, S.; Messina, M.; Miuchi, K.; Mizukoshi, K.; Molinario, A.; Moriyama, S.; Morå, K.; Mosbacher, Y.; Murra, M.; Müller, J.; Ni, K.; Oberlack, U.; Paetsch, B.; Palacio, J.; Peres, R.; Pienaar, J.; Pierre, M.; Pizzella, V.; Plante, G.; Qi, J.; Qin, J.; Ramírez García, D.; Reichard, S.; Rocchetti, A.; Rupp, N.; Sanchez, L.; Dos Santos, J.  m.  f.; Sarnoff, I.; Sartorelli, G.; Schreiner, J.; Schulte, D.; Schulte, P.; Schulze Eißing, H.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Semeria, F.; Shagin, P.; Shi, S.; Shockley, E.; Silva, M.; Simgen, H.; Takeda, A.; Tan, P. -L.; Terliuk, A.; Thers, D.; Toschi, F.; Trinchero, G.; Tunnell, C.; Tönnies, F.; Valerius, K.; Volta, G.; Wei, Y.; Weinheimer, C.; Weiss, M.; Wenz, D.; Wittweg, C.; Wolf, T.; Xu, D.; Xu, Z.; Yamashita, M.; Yang, L.; Ye, J.; Yuan, L.; Zavattini, G.; Zhong, M.; Zhu, T.; Null, Null. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 109:11(2024). [10.1103/physrevd.109.112017]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/986513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact