: We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision.

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm / Aguillard, D.  P.; Albahri, T.; Allspach, D.; Anisenkov, A.; Badgley, K.; Baeßler, S.; Bailey, I.; Bailey, L.; Baranov, V.  A.; Barlas-Yucel, E.; Barrett, T.; Barzi, E.; Bedeschi, F.; Berz, M.; Bhattacharya, M.; Binney, H.  P.; Bloom, P.; Bono, J.; Bottalico, E.; Bowcock, T.; Braun, S.; Bressler, M.; Cantatore, G.; Carey, R.  M.; Casey, B.  C.  K.; Cauz, D.; Chakraborty, R.; Chapelain, A.; Chappa, S.; Charity, S.; Chen, C.; Cheng, M.; Chislett, R.; Chu, Z.; Chupp, T.  E.; Claessens, C.; Convery, M.  E.; Corrodi, S.; Cotrozzi, L.; Crnkovic, J.  D.; Dabagov, S.; Debevec, P.  T.; Di Falco, S.; Di Sciascio, G.; Drendel, B.; Driutti, A.; Duginov, V.  N.; Eads, M.; Edmonds, A.; Esquivel, J.; Farooq, M.; Fatemi, R.; Ferrari, C.; Fertl, M.; Fienberg, A.  T.; Fioretti, A.; Flay, D.; Foster, S.  B.; Friedsam, H.; Froemming, N.  S.; Gabbanini, C.; Gaines, I.; Galati, M.  D.; Ganguly, S.; Garcia, A.; George, J.; Gibbons, L.  K.; Gioiosa, A.; Giovanetti, K.  L.; Girotti, P.; Gohn, W.; Goodenough, L.; Gorringe, T.; Grange, J.; Grant, S.; Gray, F.; Haciomeroglu, S.; Halewood-Leagas, T.; Hampai, D.; Han, F.; Hempstead, J.; Hertzog, D.  W.; Hesketh, G.; Hess, E.; Hibbert, A.; Hodge, Z.; Hong, K.  W.; Hong, R.; Hu, T.; Hu, Y.; Iacovacci, M.; Incagli, M.; Kammel, P.; Kargiantoulakis, M.; Karuza, M.; Kaspar, J.; Kawall, D.; Kelton, L.; Keshavarzi, A.; Kessler, D.  S.; Khaw, K.  S.; Khechadoorian, Z.; Khomutov, N.  V.; Kiburg, B.; Kiburg, M.; Kim, O.; Kinnaird, N.; Kraegeloh, E.; Krylov, V.  A.; Kuchinskiy, N.  A.; Labe, K.  R.; Labounty, J.; Lancaster, M.; Lee, S.; Li, B.; Li, D.; Li, L.; Logashenko, I.; Lorente Campos, A.; Lu, Z.; Lucà, A.; Lukicov, G.; Lusiani, A.; Lyon, A.  L.; Maccoy, B.; Madrak, R.; Makino, K.; Mastroianni, S.; Miller, J.  P.; Miozzi, S.; Mitra, B.; Morgan, J.  P.; Morse, W.  M.; Mott, J.; Nath, A.; Ng, J.  K.; Nguyen, H.; Oksuzian, Y.; Omarov, Z.; Osofsky, R.; Park, S.; Pauletta, G.; Piacentino, G.  M.; Pilato, R.  N.; Pitts, K.  T.; Plaster, B.; Počanić, D.; Pohlman, N.; Polly, C.  C.; Price, J.; Quinn, B.; Qureshi, M.  U.  H.; Ramachandran, S.; Ramberg, E.; Reimann, R.; Roberts, B.  L.; Rubin, D.  L.; Santi, L.; Schlesier, C.; Schreckenberger, A.; Semertzidis, Y.  K.; Shemyakin, D.; Sorbara, M.; Stöckinger, D.; Stapleton, J.; Still, D.; Stoughton, C.; Stratakis, D.; Swanson, H.  E.; Sweetmore, G.; Sweigart, D.  A.; Syphers, M.  J.; Tarazona, D.  A.; Teubner, T.; Tewsley-Booth, A.  E.; Tishchenko, V.; Tran, N.  H.; Turner, W.; Valetov, E.; Vasilkova, D.; Venanzoni, G.; Volnykh, V.  P.; Walton, T.; Weisskopf, A.; Welty-Rieger, L.; Winter, P.; Wu, Y.; Yu, B.; Yucel, M.; Zeng, Y.; Zhang, C.; Null, Null. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 131:16(2023). [10.1103/physrevlett.131.161802]

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

Iacovacci, M.;Mastroianni, S.;Nath, A.;
2023

Abstract

: We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision.
2023
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm / Aguillard, D.  P.; Albahri, T.; Allspach, D.; Anisenkov, A.; Badgley, K.; Baeßler, S.; Bailey, I.; Bailey, L.; Baranov, V.  A.; Barlas-Yucel, E.; Barrett, T.; Barzi, E.; Bedeschi, F.; Berz, M.; Bhattacharya, M.; Binney, H.  P.; Bloom, P.; Bono, J.; Bottalico, E.; Bowcock, T.; Braun, S.; Bressler, M.; Cantatore, G.; Carey, R.  M.; Casey, B.  C.  K.; Cauz, D.; Chakraborty, R.; Chapelain, A.; Chappa, S.; Charity, S.; Chen, C.; Cheng, M.; Chislett, R.; Chu, Z.; Chupp, T.  E.; Claessens, C.; Convery, M.  E.; Corrodi, S.; Cotrozzi, L.; Crnkovic, J.  D.; Dabagov, S.; Debevec, P.  T.; Di Falco, S.; Di Sciascio, G.; Drendel, B.; Driutti, A.; Duginov, V.  N.; Eads, M.; Edmonds, A.; Esquivel, J.; Farooq, M.; Fatemi, R.; Ferrari, C.; Fertl, M.; Fienberg, A.  T.; Fioretti, A.; Flay, D.; Foster, S.  B.; Friedsam, H.; Froemming, N.  S.; Gabbanini, C.; Gaines, I.; Galati, M.  D.; Ganguly, S.; Garcia, A.; George, J.; Gibbons, L.  K.; Gioiosa, A.; Giovanetti, K.  L.; Girotti, P.; Gohn, W.; Goodenough, L.; Gorringe, T.; Grange, J.; Grant, S.; Gray, F.; Haciomeroglu, S.; Halewood-Leagas, T.; Hampai, D.; Han, F.; Hempstead, J.; Hertzog, D.  W.; Hesketh, G.; Hess, E.; Hibbert, A.; Hodge, Z.; Hong, K.  W.; Hong, R.; Hu, T.; Hu, Y.; Iacovacci, M.; Incagli, M.; Kammel, P.; Kargiantoulakis, M.; Karuza, M.; Kaspar, J.; Kawall, D.; Kelton, L.; Keshavarzi, A.; Kessler, D.  S.; Khaw, K.  S.; Khechadoorian, Z.; Khomutov, N.  V.; Kiburg, B.; Kiburg, M.; Kim, O.; Kinnaird, N.; Kraegeloh, E.; Krylov, V.  A.; Kuchinskiy, N.  A.; Labe, K.  R.; Labounty, J.; Lancaster, M.; Lee, S.; Li, B.; Li, D.; Li, L.; Logashenko, I.; Lorente Campos, A.; Lu, Z.; Lucà, A.; Lukicov, G.; Lusiani, A.; Lyon, A.  L.; Maccoy, B.; Madrak, R.; Makino, K.; Mastroianni, S.; Miller, J.  P.; Miozzi, S.; Mitra, B.; Morgan, J.  P.; Morse, W.  M.; Mott, J.; Nath, A.; Ng, J.  K.; Nguyen, H.; Oksuzian, Y.; Omarov, Z.; Osofsky, R.; Park, S.; Pauletta, G.; Piacentino, G.  M.; Pilato, R.  N.; Pitts, K.  T.; Plaster, B.; Počanić, D.; Pohlman, N.; Polly, C.  C.; Price, J.; Quinn, B.; Qureshi, M.  U.  H.; Ramachandran, S.; Ramberg, E.; Reimann, R.; Roberts, B.  L.; Rubin, D.  L.; Santi, L.; Schlesier, C.; Schreckenberger, A.; Semertzidis, Y.  K.; Shemyakin, D.; Sorbara, M.; Stöckinger, D.; Stapleton, J.; Still, D.; Stoughton, C.; Stratakis, D.; Swanson, H.  E.; Sweetmore, G.; Sweigart, D.  A.; Syphers, M.  J.; Tarazona, D.  A.; Teubner, T.; Tewsley-Booth, A.  E.; Tishchenko, V.; Tran, N.  H.; Turner, W.; Valetov, E.; Vasilkova, D.; Venanzoni, G.; Volnykh, V.  P.; Walton, T.; Weisskopf, A.; Welty-Rieger, L.; Winter, P.; Wu, Y.; Yu, B.; Yucel, M.; Zeng, Y.; Zhang, C.; Null, Null. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 131:16(2023). [10.1103/physrevlett.131.161802]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/986524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 200
  • ???jsp.display-item.citation.isi??? 145
social impact