A parameterization of the impact of internal waves on momentum transfer at the sea-ice–ocean interface based on previous work by McPhee has been implemented in a sea-ice model for the first time. The ice–ocean drag from internal waves is relevant for shallow mixed layer depth and the presence of a density jump at the pycnocline and is also a function of the strength of the stratification beneath the ocean mixed layer and geometry of the ice interface. We present results from a coupled sea-ice–ocean model where the parameterization of internal wave drag has been implemented. We conducted simulations spanning the years from 2000 to 2017. We find a deceleration of ice drift by 5–8% in both winter and summer, but with significant spatial and temporal variation reaching seasonal average values of ~10%. The spatial variation of ice transport leads to local impacts on deformed ice of magnitude ~0.05 m (2–5%), and reductions in ocean-to-ice heat fluxes of ~1 W m−2, and a decrease in bottom melt of ~0.02–0.04 cm d−1. There is an increase of up to 15% in thickness and ice concentration in the Canadian Arctic and a 10% overall impact on the total sea-ice volume.
Impact of internal wave drag on Arctic sea ice / Flocco, Daniela; Feltham, Daniel; Schroeder, David; Aksenov, Yevgeny; Siahaan, Antony; Tsamados, Michel. - In: ANNALS OF GLACIOLOGY. - ISSN 0260-3055. - (2024), pp. 1-16. [10.1017/aog.2024.37]
Impact of internal wave drag on Arctic sea ice
Flocco, Daniela
;
2024
Abstract
A parameterization of the impact of internal waves on momentum transfer at the sea-ice–ocean interface based on previous work by McPhee has been implemented in a sea-ice model for the first time. The ice–ocean drag from internal waves is relevant for shallow mixed layer depth and the presence of a density jump at the pycnocline and is also a function of the strength of the stratification beneath the ocean mixed layer and geometry of the ice interface. We present results from a coupled sea-ice–ocean model where the parameterization of internal wave drag has been implemented. We conducted simulations spanning the years from 2000 to 2017. We find a deceleration of ice drift by 5–8% in both winter and summer, but with significant spatial and temporal variation reaching seasonal average values of ~10%. The spatial variation of ice transport leads to local impacts on deformed ice of magnitude ~0.05 m (2–5%), and reductions in ocean-to-ice heat fluxes of ~1 W m−2, and a decrease in bottom melt of ~0.02–0.04 cm d−1. There is an increase of up to 15% in thickness and ice concentration in the Canadian Arctic and a 10% overall impact on the total sea-ice volume.File | Dimensione | Formato | |
---|---|---|---|
impact-of-internal-wave-drag-on-arctic-sea-ice.pdf
accesso aperto
Licenza:
Copyright dell'editore
Dimensione
9.63 MB
Formato
Adobe PDF
|
9.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.