Amyloid aggregation is a widespread process that involves proteins and peptides with different molecular complexity and amino acid composition. The structural motif (cross-β) underlying this supramolecular organization generates aggregates endowed with special mechanical and spectroscopic properties with huge implications in biomedical and technological fields, including emerging precision medicine. The puzzling ability of these assemblies to emit intrinsic and label-free fluorescence in regions of the electromagnetic spectrum, such as visible and even infrared, usually considered to be forbidden in the polypeptide chain, has attracted interest for its many implications in both basic and applied science. Despite the interest in this phenomenon, the physical basis of its origin is still poorly understood. To gain a global view of the available information on this phenomenon, we here provide an exhaustive survey of the current literature in which original data on this fluorescence have been reported. The emitting systems have been classified in terms of their molecular complexity, amino acid composition, and physical state. Information about the wavelength of the radiation used for the excitation as well as the emission range/peak has also been retrieved. The data collected here provide a picture of the complexity of this multifaceted phenomenon that could be helpful for future studies aimed at defining its structural and electronic basis and/or stimulating new applications.
A Comprehensive Analysis of the Intrinsic Visible Fluorescence Emitted by Peptide/Protein Amyloid-like Assemblies / Balasco, N.; Diaferia, C.; Rosa, E.; Monti, A.; Ruvo, M.; Doti, N.; Vitagliano, L.. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 24:9(2023). [10.3390/ijms24098372]
A Comprehensive Analysis of the Intrinsic Visible Fluorescence Emitted by Peptide/Protein Amyloid-like Assemblies
Diaferia C.;Rosa E.;Ruvo M.;Doti N.;Vitagliano L.
2023
Abstract
Amyloid aggregation is a widespread process that involves proteins and peptides with different molecular complexity and amino acid composition. The structural motif (cross-β) underlying this supramolecular organization generates aggregates endowed with special mechanical and spectroscopic properties with huge implications in biomedical and technological fields, including emerging precision medicine. The puzzling ability of these assemblies to emit intrinsic and label-free fluorescence in regions of the electromagnetic spectrum, such as visible and even infrared, usually considered to be forbidden in the polypeptide chain, has attracted interest for its many implications in both basic and applied science. Despite the interest in this phenomenon, the physical basis of its origin is still poorly understood. To gain a global view of the available information on this phenomenon, we here provide an exhaustive survey of the current literature in which original data on this fluorescence have been reported. The emitting systems have been classified in terms of their molecular complexity, amino acid composition, and physical state. Information about the wavelength of the radiation used for the excitation as well as the emission range/peak has also been retrieved. The data collected here provide a picture of the complexity of this multifaceted phenomenon that could be helpful for future studies aimed at defining its structural and electronic basis and/or stimulating new applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.