Industrial Cyber-Physical Systems (ICPSs) generate cyber and physical data whose joint elaboration can provide insight into ICPSs' operating conditions. Cyber-Physical Anomaly Detection (CPAD) addresses the joint analysis of cyber and physical threats through multi-source and multi-modal data analysis. CPAD is often tailored to specific anomaly types and may use opaque deep learning models, impairing flexibility and explainability. In light of these challenges, we propose a two-level fusion framework for modeling and deploying CPAD in distributed ICPSs. The first detector-level fusion involves deploying CPAD detectors to several distributed ICPS segments and training them through data/decision fusion techniques with historical cyber-physical data. When the distributed ICPS is operational, thus collecting new cyber-physical data, ICPS segments' trained CPAD detectors provide pieces of evidence that go through the second ensemble-level fusion, for which we propose an explainable decision fusion technique based on Time-Varying Dynamic Bayesian networks. The evaluation involves the comprehensive application of the framework to a real hardware-in-the-loop case-study in a laboratory environment. The proposed ensemble-level fusion outperforms the state-of-the-art decision fusion techniques while providing explainable results.

A Two-Level Fusion Framework for Cyber-Physical Anomaly Detection / Guarino, Simone; Vitale, Francesco; Flammini, Francesco; Faramondi, Luca; Mazzocca, Nicola; Setola, Roberto. - In: IEEE TRANSACTIONS ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS. - ISSN 2832-7004. - 2:(2023), pp. 1-13. [10.1109/TICPS.2023.3336608]

A Two-Level Fusion Framework for Cyber-Physical Anomaly Detection

Francesco Vitale
Secondo
;
Nicola Mazzocca;
2023

Abstract

Industrial Cyber-Physical Systems (ICPSs) generate cyber and physical data whose joint elaboration can provide insight into ICPSs' operating conditions. Cyber-Physical Anomaly Detection (CPAD) addresses the joint analysis of cyber and physical threats through multi-source and multi-modal data analysis. CPAD is often tailored to specific anomaly types and may use opaque deep learning models, impairing flexibility and explainability. In light of these challenges, we propose a two-level fusion framework for modeling and deploying CPAD in distributed ICPSs. The first detector-level fusion involves deploying CPAD detectors to several distributed ICPS segments and training them through data/decision fusion techniques with historical cyber-physical data. When the distributed ICPS is operational, thus collecting new cyber-physical data, ICPS segments' trained CPAD detectors provide pieces of evidence that go through the second ensemble-level fusion, for which we propose an explainable decision fusion technique based on Time-Varying Dynamic Bayesian networks. The evaluation involves the comprehensive application of the framework to a real hardware-in-the-loop case-study in a laboratory environment. The proposed ensemble-level fusion outperforms the state-of-the-art decision fusion techniques while providing explainable results.
2023
A Two-Level Fusion Framework for Cyber-Physical Anomaly Detection / Guarino, Simone; Vitale, Francesco; Flammini, Francesco; Faramondi, Luca; Mazzocca, Nicola; Setola, Roberto. - In: IEEE TRANSACTIONS ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS. - ISSN 2832-7004. - 2:(2023), pp. 1-13. [10.1109/TICPS.2023.3336608]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/992769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact