Cross-flow ultrafiltration is a pressure-driven separation and enrichment process of small colloidal particles where a colloidal feed dispersion is continuously pumped through a membrane pipe permeable to the solvent only. We present a semi-analytic modified boundary layer approximation (mBLA) method for calculating the inhomogeneous concentration-polarization (CP) layer of particles near the membrane and the dispersion flow in a cross-flow filtration setup with a hollow fiber membrane. Conditions are established for which unwarranted axial flow and permeate flow reversal are excluded, and non-monotonic CP profiles are observed. The permeate flux is linked to the particle concentration on the membrane wall using the Darcy-Starling expression invoking axially varying osmotic and trans-membrane pressures. Results are discussed for dispersions of hard spheres serving as a reference system and for solvent-permeable particles mimicking non-ionic microgels. Accurate analytic expressions are employed for the concentration and solvent permeability dependent dispersion viscosity and gradient diffusion coefficient entering into the effective Stokes flow and advection-diffusion equations. We show that the mBLA concentration and flow profiles are in quantitative agreement with results by a finite element method. The mBLA results are compared with predictions by an earlier CP layer similarity solution, showing the higher precision of the former method.

Modeling cross-flow ultrafiltration of permeable particle dispersions / Park, Gun Woo; Nägele, Gerhard. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 153:20(2020). [10.1063/5.0020986]

Modeling cross-flow ultrafiltration of permeable particle dispersions

Park, Gun Woo;
2020

Abstract

Cross-flow ultrafiltration is a pressure-driven separation and enrichment process of small colloidal particles where a colloidal feed dispersion is continuously pumped through a membrane pipe permeable to the solvent only. We present a semi-analytic modified boundary layer approximation (mBLA) method for calculating the inhomogeneous concentration-polarization (CP) layer of particles near the membrane and the dispersion flow in a cross-flow filtration setup with a hollow fiber membrane. Conditions are established for which unwarranted axial flow and permeate flow reversal are excluded, and non-monotonic CP profiles are observed. The permeate flux is linked to the particle concentration on the membrane wall using the Darcy-Starling expression invoking axially varying osmotic and trans-membrane pressures. Results are discussed for dispersions of hard spheres serving as a reference system and for solvent-permeable particles mimicking non-ionic microgels. Accurate analytic expressions are employed for the concentration and solvent permeability dependent dispersion viscosity and gradient diffusion coefficient entering into the effective Stokes flow and advection-diffusion equations. We show that the mBLA concentration and flow profiles are in quantitative agreement with results by a finite element method. The mBLA results are compared with predictions by an earlier CP layer similarity solution, showing the higher precision of the former method.
2020
Modeling cross-flow ultrafiltration of permeable particle dispersions / Park, Gun Woo; Nägele, Gerhard. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 153:20(2020). [10.1063/5.0020986]
File in questo prodotto:
File Dimensione Formato  
PARK_WOOGUN.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/993690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact