In this paper we analyze the capacitary potential due to a charged body in order to deduce sharp analytic and geometric inequalities, whose equality cases are saturated by domains with spherical symmetry. In particular, for a regular bounded domain Ω ⊂ Rn, n ≥ 3, we prove that if the mean curvature H of the boundary obeys the condition (Formula Presented) then Ω is a round ball.

Some sphere theorems in linear potential theory / Borghini, Stefano; Mascellani, Giovanni; Mazzieri, Lorenzo. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 1088-6850. - 371:11(2019), pp. 7757-7790. [10.1090/tran/7637]

Some sphere theorems in linear potential theory

Borghini, Stefano;Mazzieri, Lorenzo
2019

Abstract

In this paper we analyze the capacitary potential due to a charged body in order to deduce sharp analytic and geometric inequalities, whose equality cases are saturated by domains with spherical symmetry. In particular, for a regular bounded domain Ω ⊂ Rn, n ≥ 3, we prove that if the mean curvature H of the boundary obeys the condition (Formula Presented) then Ω is a round ball.
2019
Some sphere theorems in linear potential theory / Borghini, Stefano; Mascellani, Giovanni; Mazzieri, Lorenzo. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 1088-6850. - 371:11(2019), pp. 7757-7790. [10.1090/tran/7637]
File in questo prodotto:
File Dimensione Formato  
Sphere_Potential_2018_03_20.pdf

non disponibili

Licenza: Non specificato
Dimensione 308.39 kB
Formato Adobe PDF
308.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/997779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact