This work introduces Pontryagin Neural Networks (PoNNs), a specialised subset of Physics-Informed Neural Networks (PINNs) that aim to learn optimal control actions for optimal control problems (OCPs) characterised by integral quadratic cost functions. PoNNs employ the Pontryagin Minimum Principle (PMP) to establish necessary conditions for optimality, resulting in a two-point boundary value problem (TPBVP) that involves both state and costate variables within a system of ordinary differential equations (ODEs). By modelling the unknown solutions of the TPBVP with neural networks, PoNNs effectively learn the optimal control strategies. We also derive upper bounds on the generalisation error of PoNNs in solving these OCPs, taking into account the selection and quantity of training points along with the training error. To validate our theoretical analysis, we perform numerical experiments on benchmark linear and nonlinear OCPs. The results indicate that PoNNs can successfully learn open-loop control actions for the considered class of OCPs, outperforming the commercial software GPOPS-II in terms of both accuracy and computational efficiency. The reduced computational time suggests that PoNNs hold promise for real-time applications.

Pontryagin Neural Networks for the Class of Optimal Control Problems With Integral Quadratic Cost / Schiassi, Enrico; Calabro', Francesco; De Falco, Davide Elia. - In: AEROSPACE RESEARCH COMMUNICATIONS. - ISSN 2813-6209. - 2:(2024). [10.3389/arc.2024.13151]

Pontryagin Neural Networks for the Class of Optimal Control Problems With Integral Quadratic Cost

Calabro', Francesco;
2024

Abstract

This work introduces Pontryagin Neural Networks (PoNNs), a specialised subset of Physics-Informed Neural Networks (PINNs) that aim to learn optimal control actions for optimal control problems (OCPs) characterised by integral quadratic cost functions. PoNNs employ the Pontryagin Minimum Principle (PMP) to establish necessary conditions for optimality, resulting in a two-point boundary value problem (TPBVP) that involves both state and costate variables within a system of ordinary differential equations (ODEs). By modelling the unknown solutions of the TPBVP with neural networks, PoNNs effectively learn the optimal control strategies. We also derive upper bounds on the generalisation error of PoNNs in solving these OCPs, taking into account the selection and quantity of training points along with the training error. To validate our theoretical analysis, we perform numerical experiments on benchmark linear and nonlinear OCPs. The results indicate that PoNNs can successfully learn open-loop control actions for the considered class of OCPs, outperforming the commercial software GPOPS-II in terms of both accuracy and computational efficiency. The reduced computational time suggests that PoNNs hold promise for real-time applications.
2024
Pontryagin Neural Networks for the Class of Optimal Control Problems With Integral Quadratic Cost / Schiassi, Enrico; Calabro', Francesco; De Falco, Davide Elia. - In: AEROSPACE RESEARCH COMMUNICATIONS. - ISSN 2813-6209. - 2:(2024). [10.3389/arc.2024.13151]
File in questo prodotto:
File Dimensione Formato  
arc-02-13151.pdf

accesso aperto

Descrizione: paper
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/999440
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact