Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Predicting and quantifying phenotypic consequences of genetic variants in rare disorders is a major challenge, particularly pertinent for ‘actionable’ genes such as thyroid hormone transporter MCT8 (encoded by the X-linked SLC16A2 gene), where loss-of-function (LoF) variants cause a rare neurodevelopmental and (treatable) metabolic disorder in males. The combination of deep phenotyping data with functional and computational tests and with outcomes in population cohorts, enabled us to: (i) identify the genetic aetiology of divergent clinical phenotypes of MCT8 deficiency with genotype-phenotype relationships present across survival and 24 out of 32 disease features; (ii) demonstrate a mild phenocopy in ~400,000 individuals with common genetic variants in MCT8; (iii) assess therapeutic effectiveness, which did not differ among LoF-categories; (iv) advance structural insights in normal and mutated MCT8 by delineating seven critical functional domains; (v) create a pathogenicity-severity MCT8 variant classifier that accurately predicted pathogenicity (AUC:0.91) and severity (AUC:0.86) for 8151 variants. Our information-dense mapping provides a generalizable approach to advance multiple dimensions of rare genetic disorders.
Mapping variants in thyroid hormone transporter MCT8 to disease severity by genomic, phenotypic, functional, structural and deep learning integration / Groeneweg, Stefan; van Geest, Ferdy S; Martín, Mariano; Dias, Mafalda; Frazer, Jonathan; Medina-Gomez, Carolina; Sterenborg, Rosalie B T M; Wang, Hao; Dolcetta-Capuzzo, Anna; de Rooij, Linda J; Teumer, Alexander; Abaci, Ayhan; van den Akker, Erica L T; Ambegaonkar, Gautam P; Armour, Christine M; Bacos, Iiuliu; Bakhtiani, Priyanka; Barca, Diana; Bauer, Andrew J; van den Berg, Sjoerd A A; van den Berge, Amanda; Bertini, Enrico; van Beynum, Ingrid M; Brunetti-Pierri, Nicola; Brunner, Doris; Cappa, Marco; Cappuccio, Gerarda; Castellotti, Barbara; Castiglioni, Claudia; Chatterjee, Krishna; Chesover, Alexander; Christian, Peter; Coenen-van der Spek, Jet; de Coo, Irenaeus F M; Coutant, Regis; Craiu, Dana; Crock, Patricia; Degoede, Christian; Demir, Korcan; Dewey, Cheyenne; Dica, Alice; Dimitri, Paul; Dremmen, Marjolein H G; Dubey, Rachana; Enderli, Anina; Fairchild, Jan; Gallichan, Jonathan; Garibaldi, Luigi; George, Belinda; Gevers, Evelien F; Greenup, Erin; Hackenberg, Annette; Halász, Zita; Heinrich, Bianka; Hurst, Anna C; Huynh, Tony; Isaza, Amber R; Klosowska, Anna; van der Knoop, Marieke M; Konrad, Daniel; Koolen, David A; Krude, Heiko; Kulkarni, Abhishek; Laemmle, Alexander; Lafranchi, Stephen H; Lawson-Yuen, Amy; Lebl, Jan; Leeuwenburgh, Selmar; Linder-Lucht, Michaela; López Martí, Anna; Lorea, Cláudia F; Lourenço, Charles M; Lunsing, Roelineke J; Lyons, Greta; Malikova, Jana Krenek; Mancilla, Edna E; Mccormick, Kenneth L; Mcgowan, Anne; Mericq, Veronica; Lora, Felipe Monti; Moran, Carla; Muller, Katalin E; Nicol, Lindsey E; Oliver-Petit, Isabelle; Paone, Laura; Paul, Praveen G; Polak, Michel; Porta, Francesco; Poswar, Fabiano O; Reinauer, Christina; Rozenkova, Klara; Seckold, Rowen; Seven Menevse, Tuba; Simm, Peter; Simon, Anna; Singh, Yogen; Spada, Marco; Stals, Milou A M; Stegenga, Merel T; Stoupa, Athanasia; Subramanian, Gopinath M; Szeifert, Lilla; Tonduti, Davide; Turan, Serap; Vanderniet, Joel; van der Walt, Adri; Wémeau, Jean-Louis; van Wermeskerken, Anne-Marie; Wierzba, Jolanta; de Wit, Marie-Claire Y; Wolf, Nicole I; Wurm, Michael; Zibordi, Federica; Zung, Amnon; Zwaveling-Soonawala, Nitash; Rivadeneira, Fernando; Meima, Marcel E; Marks, Debora S; Nicola, Juan P; Chen, Chi-Hua; Medici, Marco; Visser, W Edward. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 16:1(2025). [10.1038/s41467-025-56628-w]
Mapping variants in thyroid hormone transporter MCT8 to disease severity by genomic, phenotypic, functional, structural and deep learning integration
Groeneweg, Stefan;van Geest, Ferdy S;Martín, Mariano;Dias, Mafalda;Frazer, Jonathan;Medina-Gomez, Carolina;Sterenborg, Rosalie B T M;Wang, Hao;Dolcetta-Capuzzo, Anna;de Rooij, Linda J;Teumer, Alexander;Abaci, Ayhan;van den Akker, Erica L T;Ambegaonkar, Gautam P;Armour, Christine M;Bacos, Iiuliu;Bakhtiani, Priyanka;Barca, Diana;Bauer, Andrew J;van den Berg, Sjoerd A A;van den Berge, Amanda;Bertini, Enrico;van Beynum, Ingrid M;Brunetti-Pierri, Nicola;Brunner, Doris;Cappa, Marco;Cappuccio, Gerarda;Castellotti, Barbara;Castiglioni, Claudia;Chatterjee, Krishna;Chesover, Alexander;Christian, Peter;Coenen-van der Spek, Jet;de Coo, Irenaeus F M;Coutant, Regis;Craiu, Dana;Crock, Patricia;DeGoede, Christian;Demir, Korcan;Dewey, Cheyenne;Dica, Alice;Dimitri, Paul;Dremmen, Marjolein H G;Dubey, Rachana;Enderli, Anina;Fairchild, Jan;Gallichan, Jonathan;Garibaldi, Luigi;George, Belinda;Gevers, Evelien F;Greenup, Erin;Hackenberg, Annette;Halász, Zita;Heinrich, Bianka;Hurst, Anna C;Huynh, Tony;Isaza, Amber R;Klosowska, Anna;van der Knoop, Marieke M;Konrad, Daniel;Koolen, David A;Krude, Heiko;Kulkarni, Abhishek;Laemmle, Alexander;LaFranchi, Stephen H;Lawson-Yuen, Amy;Lebl, Jan;Leeuwenburgh, Selmar;Linder-Lucht, Michaela;López Martí, Anna;Lorea, Cláudia F;Lourenço, Charles M;Lunsing, Roelineke J;Lyons, Greta;Malikova, Jana Krenek;Mancilla, Edna E;McCormick, Kenneth L;McGowan, Anne;Mericq, Veronica;Lora, Felipe Monti;Moran, Carla;Muller, Katalin E;Nicol, Lindsey E;Oliver-Petit, Isabelle;Paone, Laura;Paul, Praveen G;Polak, Michel;Porta, Francesco;Poswar, Fabiano O;Reinauer, Christina;Rozenkova, Klara;Seckold, Rowen;Seven Menevse, Tuba;Simm, Peter;Simon, Anna;Singh, Yogen;Spada, Marco;Stals, Milou A M;Stegenga, Merel T;Stoupa, Athanasia;Subramanian, Gopinath M;Szeifert, Lilla;Tonduti, Davide;Turan, Serap;Vanderniet, Joel;van der Walt, Adri;Wémeau, Jean-Louis;van Wermeskerken, Anne-Marie;Wierzba, Jolanta;de Wit, Marie-Claire Y;Wolf, Nicole I;Wurm, Michael;Zibordi, Federica;Zung, Amnon;Zwaveling-Soonawala, Nitash;Rivadeneira, Fernando;Meima, Marcel E;Marks, Debora S;Nicola, Juan P;Chen, Chi-Hua;Medici, Marco;Visser, W Edward
2025
Abstract
Predicting and quantifying phenotypic consequences of genetic variants in rare disorders is a major challenge, particularly pertinent for ‘actionable’ genes such as thyroid hormone transporter MCT8 (encoded by the X-linked SLC16A2 gene), where loss-of-function (LoF) variants cause a rare neurodevelopmental and (treatable) metabolic disorder in males. The combination of deep phenotyping data with functional and computational tests and with outcomes in population cohorts, enabled us to: (i) identify the genetic aetiology of divergent clinical phenotypes of MCT8 deficiency with genotype-phenotype relationships present across survival and 24 out of 32 disease features; (ii) demonstrate a mild phenocopy in ~400,000 individuals with common genetic variants in MCT8; (iii) assess therapeutic effectiveness, which did not differ among LoF-categories; (iv) advance structural insights in normal and mutated MCT8 by delineating seven critical functional domains; (v) create a pathogenicity-severity MCT8 variant classifier that accurately predicted pathogenicity (AUC:0.91) and severity (AUC:0.86) for 8151 variants. Our information-dense mapping provides a generalizable approach to advance multiple dimensions of rare genetic disorders.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/999666
Citazioni
ND
2
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.