Background/purpose:Traditionalcariesdetectionreliesonvisualandradiographic analysis.Whiledeeplearninghasbeenappliedtoclassifycariesextent,nostudiesclassify cariesdepthusingradiomicfeatures inintraoralphotographicimages.Thisstudyevaluated aradiomics-basedapproachwithmachinelearning(ML)toclassifycariesextentanddepth, traditionallyassessedviaradiographs,usingintraoralphotographs. Materialsandmethods:StandardizedintraoralphotographsweretakenwithaNikonD7500 andMacroFlashMF-R76.Onlyimagesofhealthyteethorcariouslesionswereincluded.Images wereresized, segmentedwithLabelme,andclassifiedusing ICDASandE-Dscales.Data augmentationincreasedsamplesize.Radiomicfeatureswereextractedforeachcolorchannel usingPyradiomics.Featureselectionmethods(AUC-ROC,ReliefF,LASSO,backwardselection) wereappliedwithin5-foldcross-validationtopreventbias.MLclassifiers(LDA,k-NN,SVM, NNET)evaluatedaccuracy,sensitivity,andspecificity.Modelexplainabilityassessedfeature influenceviapartialdependenceplots,residualanalysis,andbreakedownprofile. Results:NNETwithbackwardselectionachievedhighaccuracy(87.6é5.4%).Sensitivityand specificityrangedfrom61.5%to93%and73é0%,respectively.Greenandredchannels
Beyond dental radiographs, a radiomics-based study for the classification of caries extension and depth / Armogida, Niccolò Giuseppe; Angelone, Francesca; Soltani, Parisa; Esposito, Luigi; Sansone, Mario; Rengo, Sandro; Amato, Francesco; Rengo, Carlo; Spagnuolo, Gianrico; Ponsiglione, Alfonso Maria. - In: JOURNAL OF DENTAL SCIENCES. - ISSN 1991-7902. - (2025), pp. 1-10. [10.1016/j.jds.2025.04.006]
Beyond dental radiographs, a radiomics-based study for the classification of caries extension and depth
Angelone, Francesca;Soltani, Parisa;Sansone, Mario;Rengo, Sandro;Amato, Francesco;Rengo, Carlo;Spagnuolo, Gianrico;Ponsiglione, Alfonso Maria
2025
Abstract
Background/purpose:Traditionalcariesdetectionreliesonvisualandradiographic analysis.Whiledeeplearninghasbeenappliedtoclassifycariesextent,nostudiesclassify cariesdepthusingradiomicfeatures inintraoralphotographicimages.Thisstudyevaluated aradiomics-basedapproachwithmachinelearning(ML)toclassifycariesextentanddepth, traditionallyassessedviaradiographs,usingintraoralphotographs. Materialsandmethods:StandardizedintraoralphotographsweretakenwithaNikonD7500 andMacroFlashMF-R76.Onlyimagesofhealthyteethorcariouslesionswereincluded.Images wereresized, segmentedwithLabelme,andclassifiedusing ICDASandE-Dscales.Data augmentationincreasedsamplesize.Radiomicfeatureswereextractedforeachcolorchannel usingPyradiomics.Featureselectionmethods(AUC-ROC,ReliefF,LASSO,backwardselection) wereappliedwithin5-foldcross-validationtopreventbias.MLclassifiers(LDA,k-NN,SVM, NNET)evaluatedaccuracy,sensitivity,andspecificity.Modelexplainabilityassessedfeature influenceviapartialdependenceplots,residualanalysis,andbreakedownprofile. Results:NNETwithbackwardselectionachievedhighaccuracy(87.6é5.4%).Sensitivityand specificityrangedfrom61.5%to93%and73é0%,respectively.GreenandredchannelsFile | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1991790225001199-main.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.11 MB
Formato
Adobe PDF
|
2.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.