In some recent articles, emphasis has been given to the partition of the Goodman-Kruskal’s tau index using orthogonal polynomials for the study of the non symmetrical relations in three-way contingency tables. New graphical techniques that consider such a partition and allow for the analysis of asymmetric relationships have been proposed, including three-way ordinal non symmetrical correspondence analysis (Simonetti, 2003). Such a procedure takes into account the presence of an ordinal predictor and response variables. In this paper we demonstrate the applicability of such a technique for the patient satisfaction evaluation.

Three-way ordinal non symmetrical correspondence analysis for the evaluation of the patient satisfaction / Beh, E.; Simonetti, B.; D'Ambra, Luigi. - In: STATISTICA & APPLICAZIONI. - ISSN 1824-6672. - STAMPA. - 34:(2005), pp. 21-28.

Three-way ordinal non symmetrical correspondence analysis for the evaluation of the patient satisfaction

D'AMBRA, LUIGI
2005

Abstract

In some recent articles, emphasis has been given to the partition of the Goodman-Kruskal’s tau index using orthogonal polynomials for the study of the non symmetrical relations in three-way contingency tables. New graphical techniques that consider such a partition and allow for the analysis of asymmetric relationships have been proposed, including three-way ordinal non symmetrical correspondence analysis (Simonetti, 2003). Such a procedure takes into account the presence of an ordinal predictor and response variables. In this paper we demonstrate the applicability of such a technique for the patient satisfaction evaluation.
2005
Three-way ordinal non symmetrical correspondence analysis for the evaluation of the patient satisfaction / Beh, E.; Simonetti, B.; D'Ambra, Luigi. - In: STATISTICA & APPLICAZIONI. - ISSN 1824-6672. - STAMPA. - 34:(2005), pp. 21-28.
File in questo prodotto:
File Dimensione Formato  
StatisticaEapplicazioniSimonetti.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 115.68 kB
Formato Adobe PDF
115.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/103236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact