The Cdc25 dual specificity phosphatases have central roles in coordinating cellular signalling processes and cell proliferation. It has been reported that an improper amplification or activation of these enzymes is a distinctive feature of a number of human cancers, including breast cancers. Thus, the inhibition of Cdc25 phosphatases might provide a novel approach for the discovery of new and selective antitumor agents. By using the crystal structure of the catalytic domain of Cdc25B, structural models for the interaction of various Cdc25B inhibitors (1-13) with the enzyme were generated by computational docking. The parallel use of two efficient and predictive docking programs, AutoDock and GOLD, allowed mutual validation of the predicted binding poses. To evaluate their quality, the models were validated with known structure-activity relationships and site-directed mutagenesis data. The results provide an improved basis for structure-based ligand design and suggest a possible explanation for the inhibition mechanism of the examined Cdc25B ligands. We suggest that the recurring motif of a tight interaction between the inhibitor and the two arginine residues, 482 and 544, is of prime importance for reversible enzyme inhibition. In contrast, the irreversible inhibition mechanism of 1-4 seems to be associated with the close vicinity of the quinone ring and the Cys473 catalytic thiolate. We believe that this extensive study might provide useful hints to guide the development of new potent Cdc25B inhibitors as novel anticancer drugs.

Modeling of Cdc25B Dual Specifity Protein Phosphatase Inhibitors: Docking of Ligands and Enzymatic Inhibition Mechanism / Lavecchia, Antonio; Cosconati, Sandro; Limongelli, Vittorio; Novellino, Ettore. - In: CHEMMEDCHEM. - ISSN 1860-7179. - ELETTRONICO. - 1:(2006), pp. 540-550. [10.1002/cmdc.200500092]

Modeling of Cdc25B Dual Specifity Protein Phosphatase Inhibitors: Docking of Ligands and Enzymatic Inhibition Mechanism

LAVECCHIA, ANTONIO;COSCONATI, SANDRO;LIMONGELLI, VITTORIO;NOVELLINO, ETTORE
2006

Abstract

The Cdc25 dual specificity phosphatases have central roles in coordinating cellular signalling processes and cell proliferation. It has been reported that an improper amplification or activation of these enzymes is a distinctive feature of a number of human cancers, including breast cancers. Thus, the inhibition of Cdc25 phosphatases might provide a novel approach for the discovery of new and selective antitumor agents. By using the crystal structure of the catalytic domain of Cdc25B, structural models for the interaction of various Cdc25B inhibitors (1-13) with the enzyme were generated by computational docking. The parallel use of two efficient and predictive docking programs, AutoDock and GOLD, allowed mutual validation of the predicted binding poses. To evaluate their quality, the models were validated with known structure-activity relationships and site-directed mutagenesis data. The results provide an improved basis for structure-based ligand design and suggest a possible explanation for the inhibition mechanism of the examined Cdc25B ligands. We suggest that the recurring motif of a tight interaction between the inhibitor and the two arginine residues, 482 and 544, is of prime importance for reversible enzyme inhibition. In contrast, the irreversible inhibition mechanism of 1-4 seems to be associated with the close vicinity of the quinone ring and the Cys473 catalytic thiolate. We believe that this extensive study might provide useful hints to guide the development of new potent Cdc25B inhibitors as novel anticancer drugs.
2006
Modeling of Cdc25B Dual Specifity Protein Phosphatase Inhibitors: Docking of Ligands and Enzymatic Inhibition Mechanism / Lavecchia, Antonio; Cosconati, Sandro; Limongelli, Vittorio; Novellino, Ettore. - In: CHEMMEDCHEM. - ISSN 1860-7179. - ELETTRONICO. - 1:(2006), pp. 540-550. [10.1002/cmdc.200500092]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/105945
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 69
social impact