The authors present a waveform relaxation (WR)method for systems of nonlinear Volterra integral equations (of the second kind) with a weakly singular kernel. A convergence analysis is performed for the continuous and discrete WR methods. In the latter case, the numerical method is a generalization of a 1-point collocation method. Superlinear convergence is shown in the continuous WR case.

CONTINUOUS AND DISCRETE TIME WAVEFORM RELAXATION METHODS FOR {V}OLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNELS / M., Crisci; Russo, Elvira; Brunner, H.; Vecchio, A.. - In: RICERCHE DI MATEMATICA. - ISSN 0035-5038. - STAMPA. - (2002), pp. 201-222.

CONTINUOUS AND DISCRETE TIME WAVEFORM RELAXATION METHODS FOR {V}OLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNELS

RUSSO, ELVIRA;
2002

Abstract

The authors present a waveform relaxation (WR)method for systems of nonlinear Volterra integral equations (of the second kind) with a weakly singular kernel. A convergence analysis is performed for the continuous and discrete WR methods. In the latter case, the numerical method is a generalization of a 1-point collocation method. Superlinear convergence is shown in the continuous WR case.
2002
CONTINUOUS AND DISCRETE TIME WAVEFORM RELAXATION METHODS FOR {V}OLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNELS / M., Crisci; Russo, Elvira; Brunner, H.; Vecchio, A.. - In: RICERCHE DI MATEMATICA. - ISSN 0035-5038. - STAMPA. - (2002), pp. 201-222.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/1343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact