Recent investigations of nonsmooth dynamical systems have resulted in the study of a class of novel bifurcations termed as sliding bifurcations. These bifurcations are a characteristic feature of so-called Filippov systems, that is, systems of ordinary differential equations (ODEs) with discontinuous right-hand sides. In this paper we show that sliding bifurcations also play an important role in organizing the dynamics of dry friction oscillators, which are a subclass of nonsmooth systems. After introducing the possible codimension-1 sliding bifurcations of limit cycles, we show that these bifurcations organize different types of "slip to stick-slip" transitions in dry friction oscillators. In particular, we show both numerically and analytically that a sliding bifurcation is an important mechanism causing the sudden jump to chaos previously unexplained in the literature on friction systems. To analyze such bifurcations we make use of a new analytical method based on the study of appropriate normal form maps describing sliding bifurcations. Also, we explain the circumstances under which the theory of so-called border-collision bifurcations can be used in order to explain the onset of complex behavior in stick-slip systems.
Sliding bifurcations: a novel mechanism for the sudden onset of chaos in dry-friction oscillators / DI BERNARDO, Mario; Kowalczyk, P.; Nordmark, A.. - In: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS IN APPLIED SCIENCES AND ENGINEERING. - ISSN 0218-1274. - STAMPA. - 13:10(2003), pp. 2935-2948. [10.1142/S021812740300834X]
Sliding bifurcations: a novel mechanism for the sudden onset of chaos in dry-friction oscillators
DI BERNARDO, MARIO;
2003
Abstract
Recent investigations of nonsmooth dynamical systems have resulted in the study of a class of novel bifurcations termed as sliding bifurcations. These bifurcations are a characteristic feature of so-called Filippov systems, that is, systems of ordinary differential equations (ODEs) with discontinuous right-hand sides. In this paper we show that sliding bifurcations also play an important role in organizing the dynamics of dry friction oscillators, which are a subclass of nonsmooth systems. After introducing the possible codimension-1 sliding bifurcations of limit cycles, we show that these bifurcations organize different types of "slip to stick-slip" transitions in dry friction oscillators. In particular, we show both numerically and analytically that a sliding bifurcation is an important mechanism causing the sudden jump to chaos previously unexplained in the literature on friction systems. To analyze such bifurcations we make use of a new analytical method based on the study of appropriate normal form maps describing sliding bifurcations. Also, we explain the circumstances under which the theory of so-called border-collision bifurcations can be used in order to explain the onset of complex behavior in stick-slip systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.