We study curves on a smooth rational scroll surface S, in particular the multiplicative structure of the Hartshorne–Rao module MC of any curve C ⊂ S. The main result is the construction of the minimal generators of MC . As a consequence, we get that for curves C on a rational normal scroll surface, the Hilbert function of MC determines the module structure. This is a strong form of the converse of the Hartshorne–Schenzel Theorem.

On the structure of the Hartshorne-Rao module of curves on surfaces of minimal degree / DI GENNARO, Roberta. - In: COMMUNICATIONS IN ALGEBRA. - ISSN 0092-7872. - STAMPA. - 33:(2005), pp. 2749-2763.

On the structure of the Hartshorne-Rao module of curves on surfaces of minimal degree

DI GENNARO, ROBERTA
2005

Abstract

We study curves on a smooth rational scroll surface S, in particular the multiplicative structure of the Hartshorne–Rao module MC of any curve C ⊂ S. The main result is the construction of the minimal generators of MC . As a consequence, we get that for curves C on a rational normal scroll surface, the Hilbert function of MC determines the module structure. This is a strong form of the converse of the Hartshorne–Schenzel Theorem.
2005
On the structure of the Hartshorne-Rao module of curves on surfaces of minimal degree / DI GENNARO, Roberta. - In: COMMUNICATIONS IN ALGEBRA. - ISSN 0092-7872. - STAMPA. - 33:(2005), pp. 2749-2763.
File in questo prodotto:
File Dimensione Formato  
reprint_Communications2005.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 122.79 kB
Formato Adobe PDF
122.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/138700
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact