It is shown that a K-quasiminimizer u for the one-dimensional p-Dirichlet integral is a K'-quasiminimizer for the q-Dirichlet integral, 1 <= q < p(1)(p, K), where p(1)(p, K)> p; the exact value for p(1)(p, K) is obtained. The inverse function of a non-constant u is also K ''-quasiminimizer for the s-Dirichlet integral and the range of the exponent s is specified. Connections between quasiminimizers, superminimizers and solutions to obstacle problems are studied.

Quasiminimizers in one dimension: integrability of the derivate, inverse function and obstacle problems / O., Martio; Sbordone, Carlo. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 186:(2007), pp. 579-590.

Quasiminimizers in one dimension: integrability of the derivate, inverse function and obstacle problems

SBORDONE, CARLO
2007

Abstract

It is shown that a K-quasiminimizer u for the one-dimensional p-Dirichlet integral is a K'-quasiminimizer for the q-Dirichlet integral, 1 <= q < p(1)(p, K), where p(1)(p, K)> p; the exact value for p(1)(p, K) is obtained. The inverse function of a non-constant u is also K ''-quasiminimizer for the s-Dirichlet integral and the range of the exponent s is specified. Connections between quasiminimizers, superminimizers and solutions to obstacle problems are studied.
2007
Quasiminimizers in one dimension: integrability of the derivate, inverse function and obstacle problems / O., Martio; Sbordone, Carlo. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 186:(2007), pp. 579-590.
File in questo prodotto:
File Dimensione Formato  
Ann Mat.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 165.64 kB
Formato Adobe PDF
165.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/162436
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact