On the ball |x| ≤ 1 of R m , m ≥ 2, a radial variational problem, related to a priori estimates for solutions to extremal elliptic equations with fixed ellipticity constant α is investigated. Such a problem has been studied and solved [see Manselli Ann. Mat. Pura Appl. (IV), t. LXXXIX:31–54, 1971] in L p spaces, with p ≤ m. In this paper, we assume p > m and we prove the existence of a positive number α 0 = α 0(p,m) such that if there exists a smooth function maximizing the problem, whose representation is explicitly determined as in Manselli [Ann. Mat. Pura Appl. (IV), t. LXXXIX:31–54, 1971] This fact is no longer true if 0 < α < α 0.
On a variational problem for radial solutions to extremal elliptic equations / O., Arena; Buonocore, Pasquale. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 188:2(2009), pp. 187-206. [10.1007/s10231]
On a variational problem for radial solutions to extremal elliptic equations
BUONOCORE, PASQUALE
2009
Abstract
On the ball |x| ≤ 1 of R m , m ≥ 2, a radial variational problem, related to a priori estimates for solutions to extremal elliptic equations with fixed ellipticity constant α is investigated. Such a problem has been studied and solved [see Manselli Ann. Mat. Pura Appl. (IV), t. LXXXIX:31–54, 1971] in L p spaces, with p ≤ m. In this paper, we assume p > m and we prove the existence of a positive number α 0 = α 0(p,m) such that if there exists a smooth function maximizing the problem, whose representation is explicitly determined as in Manselli [Ann. Mat. Pura Appl. (IV), t. LXXXIX:31–54, 1971] This fact is no longer true if 0 < α < α 0.File | Dimensione | Formato | |
---|---|---|---|
Arena-Buonocore.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Accesso privato/ristretto
Dimensione
199.4 kB
Formato
Adobe PDF
|
199.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Arena-Buonocore.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Dominio pubblico
Dimensione
199.4 kB
Formato
Adobe PDF
|
199.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.