In this paper we study a class of infinite words on a finite alphabet A whose factors are closed under the image of an involutory antimorphism θ of the free monoid A*. We show that given a recurrent infinite word ω∈A^N, if there exists a positive integer K such that for each n≥1 the word ω has card A + (n−1)K distinct factors of length n, and a unique right and a unique left special factor of length n, then there exists an involutory antimorphism θ of the free monoid A* preserving the set of factors of ω.
On θ-episturmian words / Bucci, Michelangelo; DE LUCA, Alessandro; DE LUCA, Aldo; Zamboni, L. Q.. - In: EUROPEAN JOURNAL OF COMBINATORICS. - ISSN 0195-6698. - STAMPA. - 30:2(2009), pp. 473-479. [10.1016/j.ejc.2008.04.010]
On θ-episturmian words
BUCCI, MICHELANGELO;DE LUCA, ALESSANDRO;DE LUCA, ALDO;
2009
Abstract
In this paper we study a class of infinite words on a finite alphabet A whose factors are closed under the image of an involutory antimorphism θ of the free monoid A*. We show that given a recurrent infinite word ω∈A^N, if there exists a positive integer K such that for each n≥1 the word ω has card A + (n−1)K distinct factors of length n, and a unique right and a unique left special factor of length n, then there exists an involutory antimorphism θ of the free monoid A* preserving the set of factors of ω.File | Dimensione | Formato | |
---|---|---|---|
Otew.pdf
accesso aperto
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
169.12 kB
Formato
Adobe PDF
|
169.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.