We investigate stability issues concerning the radial symmetry of solutions to Serrin's overdetermined problems. In particular, we show that, if $u$ is a solution to $\Delta u=n$ in a smooth domain $\Omega \subset \rn$, $u=0$ on $\partial\Omega$ and $|Du|$ is close to 1 on $\partial\Omega$, then $\Omega$ is close to the union of a certain number of disjoint unitary balls.
On the stability of the Serrin problem / Brandolini, Barbara; Nitsch, Carlo; P., Salani; Trombetti, Cristina. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 245:(2008), pp. 1566-1583. [10.1016/j.jde.2008.06.010]
On the stability of the Serrin problem
BRANDOLINI, BARBARA;NITSCH, CARLO;TROMBETTI, CRISTINA
2008
Abstract
We investigate stability issues concerning the radial symmetry of solutions to Serrin's overdetermined problems. In particular, we show that, if $u$ is a solution to $\Delta u=n$ in a smooth domain $\Omega \subset \rn$, $u=0$ on $\partial\Omega$ and $|Du|$ is close to 1 on $\partial\Omega$, then $\Omega$ is close to the union of a certain number of disjoint unitary balls.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
jderepr.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
351.28 kB
Formato
Adobe PDF
|
351.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.