Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data.

Stability of radial symmetry for a Monge - Ampère overdetermined problem / Brandolini, Barbara; Nitsch, Carlo; P., Salani; Trombetti, Cristina. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 188:3(2009), pp. 445-453. [10.1007/s10231-008-0083-4]

Stability of radial symmetry for a Monge - Ampère overdetermined problem

BRANDOLINI, BARBARA;NITSCH, CARLO;TROMBETTI, CRISTINA
2009

Abstract

Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data.
2009
Stability of radial symmetry for a Monge - Ampère overdetermined problem / Brandolini, Barbara; Nitsch, Carlo; P., Salani; Trombetti, Cristina. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 188:3(2009), pp. 445-453. [10.1007/s10231-008-0083-4]
File in questo prodotto:
File Dimensione Formato  
BNST2009.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 151.99 kB
Formato Adobe PDF
151.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/301618
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact