Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data.
Stability of radial symmetry for a Monge - Ampère overdetermined problem / Brandolini, Barbara; Nitsch, Carlo; P., Salani; Trombetti, Cristina. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 188:3(2009), pp. 445-453. [10.1007/s10231-008-0083-4]
Stability of radial symmetry for a Monge - Ampère overdetermined problem
BRANDOLINI, BARBARA;NITSCH, CARLO;TROMBETTI, CRISTINA
2009
Abstract
Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data.File | Dimensione | Formato | |
---|---|---|---|
BNST2009.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
151.99 kB
Formato
Adobe PDF
|
151.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.