Abstract We characterize the minimum size blocking sets with respect to the external lines to a non-singular quadric or a quadric with a point vertex in PG(d; q), d ≥ 4 and q ≥ 9. Our results show that these minimum size blocking sets are equal to the sets of points not on the quadric in a suitably chosen hyperplane with respect to the quadric.
On minimum size blocking sets of external lines to a quadric in PG(d, q) / LO RE, PIA MARIA; Biondi, Paola; Storme, L.. - In: INNOVATIONS IN INCIDENCE GEOMETRY. - ISSN 1781-6475. - STAMPA. - 5 (2007):(2007), pp. 1-11.
On minimum size blocking sets of external lines to a quadric in PG(d, q)
LO RE, PIA MARIA;BIONDI, PAOLA;
2007
Abstract
Abstract We characterize the minimum size blocking sets with respect to the external lines to a non-singular quadric or a quadric with a point vertex in PG(d; q), d ≥ 4 and q ≥ 9. Our results show that these minimum size blocking sets are equal to the sets of points not on the quadric in a suitably chosen hyperplane with respect to the quadric.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
blockingsets.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
162.1 kB
Formato
Adobe PDF
|
162.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.