We study the inversion of potential fields and evaluate the degree of depth resolution achievable for a given problem. To this end, we introduce a powerful new tool: the depth-resolution plot (DRP). The DRP allows a theoretical study of how much the depth resolution in a potential-field inversion is influenced by the way the problem is discretized and regularized. The DRP also allows a careful study of the influence of various kinds of ambiguities, such as those from data errors or of a purely algebraic nature. The achievable depth resolution is related to the given discretization, regularization, and data noise level. We compute DRP by means of singular-value decomposition (SVD) or its generalization (GSVD), depending on the particular regularization method chosen. To illustrate the use of the DRP, we assume a source volume of specified depth and horizontal extent in which the solution is piecewise constant within a 3D grid of blocks. We consider various linear regularization terms in a Tikhonov (damped least-squares) formulation, some based on using higher-order derivatives in the objective function. DRPs are illustrated for both synthetic and real data. Our analysis shows that if the algebraic ambiguity is not too large and a suitable smoothing norm is used, some depth resolution can be obtained without resorting to any subjective choice of depth weighting.

Ambiguity and Depth Resolution in Potential Field Inversion / Fedi, Maurizio; Hansen, P. C.; Paoletti, Valeria. - In: COMMUNICATIONS TO SIMAI CONGRESS. - ISSN 1827-9015. - ELETTRONICO. - 2:(2007), pp. 1-9. [10.1685/CSC06155]

Ambiguity and Depth Resolution in Potential Field Inversion

FEDI, MAURIZIO;PAOLETTI, VALERIA
2007

Abstract

We study the inversion of potential fields and evaluate the degree of depth resolution achievable for a given problem. To this end, we introduce a powerful new tool: the depth-resolution plot (DRP). The DRP allows a theoretical study of how much the depth resolution in a potential-field inversion is influenced by the way the problem is discretized and regularized. The DRP also allows a careful study of the influence of various kinds of ambiguities, such as those from data errors or of a purely algebraic nature. The achievable depth resolution is related to the given discretization, regularization, and data noise level. We compute DRP by means of singular-value decomposition (SVD) or its generalization (GSVD), depending on the particular regularization method chosen. To illustrate the use of the DRP, we assume a source volume of specified depth and horizontal extent in which the solution is piecewise constant within a 3D grid of blocks. We consider various linear regularization terms in a Tikhonov (damped least-squares) formulation, some based on using higher-order derivatives in the objective function. DRPs are illustrated for both synthetic and real data. Our analysis shows that if the algebraic ambiguity is not too large and a suitable smoothing norm is used, some depth resolution can be obtained without resorting to any subjective choice of depth weighting.
2007
Ambiguity and Depth Resolution in Potential Field Inversion / Fedi, Maurizio; Hansen, P. C.; Paoletti, Valeria. - In: COMMUNICATIONS TO SIMAI CONGRESS. - ISSN 1827-9015. - ELETTRONICO. - 2:(2007), pp. 1-9. [10.1685/CSC06155]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/315518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact